Journal article

Wavelets for multichannel signals


Authors listBacchelli, S; Cotronei, M; Sauer, T

Publication year2002

Pages581-598

JournalAdvances in Applied Mathematics

Volume number29

Issue number4

ISSN0196-8858

DOI Linkhttps://doi.org/10.1016/S0196-8858(02)00033-7

PublisherElsevier


Abstract
In this paper, we introduce and investigate multichannel wavelets, which are wavelets for vector fields, based on the concept of full rank subdivision operators. We prove that, like in the scalar and multiwavelet case, the existence of a scaling function with orthogonal integer translates guarantees the existence of a wavelet function, also with orthonormal integer translates. In this context, however, scaling functions as well as wavelets turn out to be matrix-valued functions. (C) 2002 Elsevier Science (USA). All rights reserved.



Citation Styles

Harvard Citation styleBacchelli, S., Cotronei, M. and Sauer, T. (2002) Wavelets for multichannel signals, Advances in Applied Mathematics, 29(4), Article PII S0196-8858(02)00033-7. pp. 581-598. https://doi.org/10.1016/S0196-8858(02)00033-7

APA Citation styleBacchelli, S., Cotronei, M., & Sauer, T. (2002). Wavelets for multichannel signals. Advances in Applied Mathematics. 29(4), Article PII S0196-8858(02)00033-7, 581-598. https://doi.org/10.1016/S0196-8858(02)00033-7



Keywords


full rank subdivisionmatrix waveletsmultichannel waveletsmultiwaveletsstationary subdivision

Last updated on 2025-02-04 at 06:34