Journalartikel

On stable local bases for bivariate polynomial spline spaces


AutorenlisteDavydov, O; Schumaker, LL

Jahr der Veröffentlichung2002

Seiten87-116

ZeitschriftConstructive Approximation

Bandnummer18

Heftnummer1

ISSN0176-4276

eISSN1432-0940

VerlagSpringer


Abstract
Stable locally supported bases are constructed for the spaces S-d(r)(Delta) of polynomial splines of degree d greater than or equal to 3r + 2 and smoothness r defined on triangulations A, as well as for various superspline subspaces. In addition, we show that for r greater than or equal to 1, in general, it is impossible to construct bases which are simultaneously stable and locally linearly independent.



Zitierstile

Harvard-ZitierstilDavydov, O. and Schumaker, L. (2002) On stable local bases for bivariate polynomial spline spaces, Constructive Approximation, 18(1), pp. 87-116

APA-ZitierstilDavydov, O., & Schumaker, L. (2002). On stable local bases for bivariate polynomial spline spaces. Constructive Approximation. 18(1), 87-116.



Schlagwörter


dimensionlocal basespolynomial splinesSMOOTHNESS-RSPHERE-LIKE SURFACES

Zuletzt aktualisiert 2025-02-04 um 04:25