Journalartikel
Autorenliste: Davydov, O; Schumaker, LL
Jahr der Veröffentlichung: 2002
Seiten: 87-116
Zeitschrift: Constructive Approximation
Bandnummer: 18
Heftnummer: 1
ISSN: 0176-4276
eISSN: 1432-0940
Verlag: Springer
Abstract:
Stable locally supported bases are constructed for the spaces S-d(r)(Delta) of polynomial splines of degree d greater than or equal to 3r + 2 and smoothness r defined on triangulations A, as well as for various superspline subspaces. In addition, we show that for r greater than or equal to 1, in general, it is impossible to construct bases which are simultaneously stable and locally linearly independent.
Zitierstile
Harvard-Zitierstil: Davydov, O. and Schumaker, L. (2002) On stable local bases for bivariate polynomial spline spaces, Constructive Approximation, 18(1), pp. 87-116
APA-Zitierstil: Davydov, O., & Schumaker, L. (2002). On stable local bases for bivariate polynomial spline spaces. Constructive Approximation. 18(1), 87-116.
Schlagwörter
dimension; local bases; polynomial splines; SMOOTHNESS-R; SPHERE-LIKE SURFACES