Journal article

Stable local bases for multivariate spline spaces


Authors listDavydov, O

Publication year2001

Pages267-297

JournalJournal of Approximation Theory

Volume number111

Issue number2

ISSN0021-9045

Open access statusGreen

DOI Linkhttps://doi.org/10.1006/jath.2001.3577

PublisherElsevier


Abstract
We present an algorithm for constructing stable local bases for the spaces J(d)(r)(Delta) of multivariate polynomial splines of smoothness r greater than or equal to 1 and degree d greater than or equal to r2(n) +1 on an arbitrary triangulation Delta of a bounded polyhedral domain Omega subset of R-n, n greater than or equal to 2. (C) 2001 Academic Press.



Citation Styles

Harvard Citation styleDavydov, O. (2001) Stable local bases for multivariate spline spaces, Journal of Approximation Theory, 111(2), pp. 267-297. https://doi.org/10.1006/jath.2001.3577

APA Citation styleDavydov, O. (2001). Stable local bases for multivariate spline spaces. Journal of Approximation Theory. 111(2), 267-297. https://doi.org/10.1006/jath.2001.3577



Keywords


BIVARIATE SPLINESFINITE-ELEMENTSVERTEX SPLINES

Last updated on 2025-10-06 at 09:25