Journalartikel

Geometric properties of Julia sets of the composition of polynomials of the form z2+cn


AutorenlisteBrück, R

Jahr der Veröffentlichung2001

Seiten347-372

ZeitschriftPacific Journal of Mathematics

Bandnummer198

Heftnummer2

ISSN0030-8730

Open Access StatusBronze

VerlagMathematical Sciences Publishers (MSP)


Abstract
For a sequence (c(n)) of complex numbers we consider the quadratic polynomials fc(n) (z) : = z(2) + c(n) and the sequence (F-n) of iterates F-n : = f(cn)circle...circlef(c1). The Fatou set F-(cn) is by definition the set of all z is an element of (C) over cap such that (F-n) is normal in some neighbourhood of z, while the complement of F-(cn) is called the Julia set J((cn)). The aim of this article is to study geometric properties, Lebesgue measure and Hausdorff dimension of the Julia set J((cn)) provided that the sequence (c(n)) is bounded.



Zitierstile

Harvard-ZitierstilBrück, R. (2001) Geometric properties of Julia sets of the composition of polynomials of the form z2+cn, Pacific Journal of Mathematics, 198(2), pp. 347-372

APA-ZitierstilBrück, R. (2001). Geometric properties of Julia sets of the composition of polynomials of the form z2+cn. Pacific Journal of Mathematics. 198(2), 347-372.



Schlagwörter


CONNECTEDNESSHAUSDORFF DIMENSIONRANDOM ITERATIONS

Zuletzt aktualisiert 2025-10-06 um 09:24