Journalartikel
Autorenliste: Brück, R
Jahr der Veröffentlichung: 2001
Seiten: 347-372
Zeitschrift: Pacific Journal of Mathematics
Bandnummer: 198
Heftnummer: 2
ISSN: 0030-8730
Open Access Status: Bronze
Verlag: Mathematical Sciences Publishers (MSP)
Abstract:
For a sequence (c(n)) of complex numbers we consider the quadratic polynomials fc(n) (z) : = z(2) + c(n) and the sequence (F-n) of iterates F-n : = f(cn)circle...circlef(c1). The Fatou set F-(cn) is by definition the set of all z is an element of (C) over cap such that (F-n) is normal in some neighbourhood of z, while the complement of F-(cn) is called the Julia set J((cn)). The aim of this article is to study geometric properties, Lebesgue measure and Hausdorff dimension of the Julia set J((cn)) provided that the sequence (c(n)) is bounded.
Zitierstile
Harvard-Zitierstil: Brück, R. (2001) Geometric properties of Julia sets of the composition of polynomials of the form z2+cn, Pacific Journal of Mathematics, 198(2), pp. 347-372
APA-Zitierstil: Brück, R. (2001). Geometric properties of Julia sets of the composition of polynomials of the form z2+cn. Pacific Journal of Mathematics. 198(2), 347-372.
Schlagwörter
CONNECTEDNESS; HAUSDORFF DIMENSION; RANDOM ITERATIONS