Journal article

Interpolation by Cl splines of degree q≥4 on triangulations


Authors listDavydov, O; Nürnberger, G

Publication year2000

Pages159-183

JournalJournal of Computational and Applied Mathematics

Volume number126

Issue number1-2

ISSN0377-0427

eISSN1879-1778

Open access statusGreen

DOI Linkhttps://doi.org/10.1016/S0377-0427(99)00350-7

PublisherElsevier


Abstract
Let Delta be an arbitrary regular triangulation of a simply connected compact polygonal domain Omega subset of R-2 and let S-q(l)(Delta) denote the space of bivariate polynomial splines of degree a and smoothness 1 with respect to d. We develop an algorithm for constructing point sets admissible for Lagrange interpolation by S-q(l)(Delta) if q greater than or equal to4. In the case q = 4 it may be necessary to slightly modify Delta, but only if exceptional constellations of triangles occur. Hermite interpolation schemes are obtained as limits of the Lagrange interpolation sets. (C) 2000 Elsevier Science B.V. All rights reserved. MSG: 41A15; 41A63.



Citation Styles

Harvard Citation styleDavydov, O. and Nürnberger, G. (2000) Interpolation by Cl splines of degree q≥4 on triangulations, Journal of Computational and Applied Mathematics, 126(1-2), pp. 159-183. https://doi.org/10.1016/S0377-0427(99)00350-7

APA Citation styleDavydov, O., & Nürnberger, G. (2000). Interpolation by Cl splines of degree q≥4 on triangulations. Journal of Computational and Applied Mathematics. 126(1-2), 159-183. https://doi.org/10.1016/S0377-0427(99)00350-7



Keywords


APPROXIMATION ORDERbivariate splinesBIVARIATE SPLINES

Last updated on 2025-10-06 at 09:24