Journal article
Authors list: Davydov, O; Nürnberger, G
Publication year: 2000
Pages: 159-183
Journal: Journal of Computational and Applied Mathematics
Volume number: 126
Issue number: 1-2
ISSN: 0377-0427
eISSN: 1879-1778
Open access status: Green
DOI Link: https://doi.org/10.1016/S0377-0427(99)00350-7
Publisher: Elsevier
Abstract:
Let Delta be an arbitrary regular triangulation of a simply connected compact polygonal domain Omega subset of R-2 and let S-q(l)(Delta) denote the space of bivariate polynomial splines of degree a and smoothness 1 with respect to d. We develop an algorithm for constructing point sets admissible for Lagrange interpolation by S-q(l)(Delta) if q greater than or equal to4. In the case q = 4 it may be necessary to slightly modify Delta, but only if exceptional constellations of triangles occur. Hermite interpolation schemes are obtained as limits of the Lagrange interpolation sets. (C) 2000 Elsevier Science B.V. All rights reserved. MSG: 41A15; 41A63.
Citation Styles
Harvard Citation style: Davydov, O. and Nürnberger, G. (2000) Interpolation by Cl splines of degree q≥4 on triangulations, Journal of Computational and Applied Mathematics, 126(1-2), pp. 159-183. https://doi.org/10.1016/S0377-0427(99)00350-7
APA Citation style: Davydov, O., & Nürnberger, G. (2000). Interpolation by Cl splines of degree q≥4 on triangulations. Journal of Computational and Applied Mathematics. 126(1-2), 159-183. https://doi.org/10.1016/S0377-0427(99)00350-7
Keywords
APPROXIMATION ORDER; bivariate splines; BIVARIATE SPLINES