Journalartikel

Linear transvection groups and embedded polar spaces


AutorenlisteCuypers, H; Steinbach, A

Jahr der Veröffentlichung1999

Seiten169-198

ZeitschriftInventiones Mathematicae

Bandnummer137

Heftnummer1

ISSN0020-9910

eISSN1432-1297

DOI Linkhttps://doi.org/10.1007/s002220050328

VerlagSpringer


Abstract
Most classical groups arising from (anti-) hermitian forms or (pseudo-) quadratic forms contain so-called isotropic transvections. The isotropic transvection subgroups of these classical groups, i.e., the subgroups generated by all isotropic transvections with a fixed axis, form a class Sigma of abelian subgroups which is a class of abstract transvection groups in the sense of Timmesfeld [24]. In this paper we give a common characterization of all these classical groups with isotropic transvections as linear groups generated by a class Sigma of abstract transvection groups such that the elements of A is an element of C are transvections.



Zitierstile

Harvard-ZitierstilCuypers, H. and Steinbach, A. (1999) Linear transvection groups and embedded polar spaces, Inventiones Mathematicae, 137(1), pp. 169-198. https://doi.org/10.1007/s002220050328

APA-ZitierstilCuypers, H., & Steinbach, A. (1999). Linear transvection groups and embedded polar spaces. Inventiones Mathematicae. 137(1), 169-198. https://doi.org/10.1007/s002220050328



Schlagwörter


MODULESROOT ELEMENTSSUBGROUPS


Nachhaltigkeitsbezüge


Zuletzt aktualisiert 2025-02-04 um 06:59