Journal article

Subgroups of classical groups generated by transvections or Siegel transvections I: Embeddings in linear groups


Authors listSteinbach, AI

Publication year1997

Pages281-322

JournalGeometriae Dedicata

Volume number68

Issue number3

ISSN0046-5755

DOI Linkhttps://doi.org/10.1023/A:1004996924764

PublisherSpringer


Abstract
We are concerned with finite-dimensional classical groups over arbitrary commutative fields. In an orthogonal group a Siegel transvection, that is, an element centralizing l(perpendicular to) for some totally singular 2-dimensional subspace l, plays the same role as a transvection in the linear, symplectic or unitary groups. The Main Theorem of this paper describes the possible embeddings of classical groups in classical groups such that (Siegel) transvections act as (Siegel) transvections.



Citation Styles

Harvard Citation styleSteinbach, A. (1997) Subgroups of classical groups generated by transvections or Siegel transvections I: Embeddings in linear groups, Geometriae Dedicata, 68(3), pp. 281-322. https://doi.org/10.1023/A:1004996924764

APA Citation styleSteinbach, A. (1997). Subgroups of classical groups generated by transvections or Siegel transvections I: Embeddings in linear groups. Geometriae Dedicata. 68(3), 281-322. https://doi.org/10.1023/A:1004996924764



Keywords


classical groupembedding of projective spacesfundamental theorem of projective geometryK-ROOT SUBGROUPSlong root elementOVERGROUPSPolar spaceSiegel transvectiontransvection


SDG Areas


Last updated on 2025-02-04 at 05:57