Konferenzpaper

Proper blocking sets in projective spaces


AutorenlisteHeim, U

Jahr der Veröffentlichung1997

Seiten167-176

ZeitschriftDiscrete Mathematics

Bandnummer174

Heftnummer1-3

ISSN0012-365X

Open Access StatusBronze

DOI Linkhttps://doi.org/10.1016/S0012-365X(96)00294-4

KonferenzInternational Conference Combinatorics 94

VerlagElsevier


Abstract
In this paper we introduce the new concept of proper blocking sets B infinite projective spaces, that means every hyperplane contains a point of B, no line is contained in B, and there is no hyperplane that induces a blocking set. In Theorem 1.4, we prove that a blocking set in PG(d, q), q greater than or equal to 3, that has less than the number of points of a blocking set in PG(2, q) of minimum cardinality plus one, already contains a blocking set in a plane and is therefore not proper. In the last section, we construct various examples of proper blocking sets with a small number of points.



Zitierstile

Harvard-ZitierstilHeim, U. (1997) Proper blocking sets in projective spaces, Discrete Mathematics, 174(1-3), pp. 167-176. https://doi.org/10.1016/S0012-365X(96)00294-4

APA-ZitierstilHeim, U. (1997). Proper blocking sets in projective spaces. Discrete Mathematics. 174(1-3), 167-176. https://doi.org/10.1016/S0012-365X(96)00294-4



Schlagwörter


PLANES


Nachhaltigkeitsbezüge


Zuletzt aktualisiert 2025-10-06 um 12:21