Journal article
Authors list: Baumeister, B; Meixner, T; Pasini, A
Publication year: 1997
Pages: 163-180
Journal: Geometriae Dedicata
Volume number: 67
Issue number: 2
ISSN: 0046-5755
DOI Link: https://doi.org/10.1023/A:1004913528398
Publisher: Springer
Abstract:
Let Gamma be a finite geometry of rank n greater than or equal to 2 with a selected type of elements, called 'points'. Let m be the number of 'points' of Gamma. Under some mild hypotheses on Gamma we can consider an affine expansion of Gamma to AG(m, 2). We prove that the geometries obtained by applying this construction to matroids are simply connected. Then we exploit this result to study universal covers of certain geometries arising from hyperbolic quadrics and symplectic varieties over GF(2).
Citation Styles
Harvard Citation style: Baumeister, B., Meixner, T. and Pasini, A. (1997) GF(2)-expansions, Geometriae Dedicata, 67(2), pp. 163-180. https://doi.org/10.1023/A:1004913528398
APA Citation style: Baumeister, B., Meixner, T., & Pasini, A. (1997). GF(2)-expansions. Geometriae Dedicata. 67(2), 163-180. https://doi.org/10.1023/A:1004913528398
Keywords
affine expansions; coxeter complexes; GF(2)-modules