Journal article

GF(2)-expansions


Authors listBaumeister, B; Meixner, T; Pasini, A

Publication year1997

Pages163-180

JournalGeometriae Dedicata

Volume number67

Issue number2

ISSN0046-5755

DOI Linkhttps://doi.org/10.1023/A:1004913528398

PublisherSpringer


Abstract
Let Gamma be a finite geometry of rank n greater than or equal to 2 with a selected type of elements, called 'points'. Let m be the number of 'points' of Gamma. Under some mild hypotheses on Gamma we can consider an affine expansion of Gamma to AG(m, 2). We prove that the geometries obtained by applying this construction to matroids are simply connected. Then we exploit this result to study universal covers of certain geometries arising from hyperbolic quadrics and symplectic varieties over GF(2).



Citation Styles

Harvard Citation styleBaumeister, B., Meixner, T. and Pasini, A. (1997) GF(2)-expansions, Geometriae Dedicata, 67(2), pp. 163-180. https://doi.org/10.1023/A:1004913528398

APA Citation styleBaumeister, B., Meixner, T., & Pasini, A. (1997). GF(2)-expansions. Geometriae Dedicata. 67(2), 163-180. https://doi.org/10.1023/A:1004913528398



Keywords


affine expansionscoxeter complexesGF(2)-modules


SDG Areas


Last updated on 2025-02-04 at 07:30