Journalartikel

su(1,1) algebraic description of one-dimensional potentials within the R-matrix theory


AutorenlisteIonescu, RA; Ludu, A; Scheid, W

Jahr der Veröffentlichung1996

Seiten3669-3677

ZeitschriftJournal of physics. A: Mathematical and general

Bandnummer29

Heftnummer13

ISSN0305-4470

DOI Linkhttps://doi.org/10.1088/0305-4470/29/13/031

VerlagIOP Publishing Ltd


Abstract
The eigenstates of a particle in a rectangular-well potential with appropriate boundary conditions are proved to be the standard basis of an irreducible representation of the su(1, 1) Lie algebra. The algebra operators are constructed explicitly and the energy levels and the R-function are calculated. Due to the general connection between the generators of su(1, 1) we can algebraically relate a wide class of one-dimensional potentials to the su(1, 1) Lie algebra in this framework. This algebraic approach allows us to write an algebraic parametrization for the R-function.



Zitierstile

Harvard-ZitierstilIonescu, R., Ludu, A. and Scheid, W. (1996) su(1,1) algebraic description of one-dimensional potentials within the R-matrix theory, Journal of physics. A: Mathematical and general, 29(13), pp. 3669-3677. https://doi.org/10.1088/0305-4470/29/13/031

APA-ZitierstilIonescu, R., Ludu, A., & Scheid, W. (1996). su(1,1) algebraic description of one-dimensional potentials within the R-matrix theory. Journal of physics. A: Mathematical and general. 29(13), 3669-3677. https://doi.org/10.1088/0305-4470/29/13/031



Schlagwörter


EQUATION


Nachhaltigkeitsbezüge


Zuletzt aktualisiert 2025-02-04 um 07:58