Journalartikel
Autorenliste: Ionescu, RA; Ludu, A; Scheid, W
Jahr der Veröffentlichung: 1996
Seiten: 3669-3677
Zeitschrift: Journal of physics. A: Mathematical and general
Bandnummer: 29
Heftnummer: 13
ISSN: 0305-4470
DOI Link: https://doi.org/10.1088/0305-4470/29/13/031
Verlag: IOP Publishing Ltd
Abstract:
The eigenstates of a particle in a rectangular-well potential with appropriate boundary conditions are proved to be the standard basis of an irreducible representation of the su(1, 1) Lie algebra. The algebra operators are constructed explicitly and the energy levels and the R-function are calculated. Due to the general connection between the generators of su(1, 1) we can algebraically relate a wide class of one-dimensional potentials to the su(1, 1) Lie algebra in this framework. This algebraic approach allows us to write an algebraic parametrization for the R-function.
Zitierstile
Harvard-Zitierstil: Ionescu, R., Ludu, A. and Scheid, W. (1996) su(1,1) algebraic description of one-dimensional potentials within the R-matrix theory, Journal of physics. A: Mathematical and general, 29(13), pp. 3669-3677. https://doi.org/10.1088/0305-4470/29/13/031
APA-Zitierstil: Ionescu, R., Ludu, A., & Scheid, W. (1996). su(1,1) algebraic description of one-dimensional potentials within the R-matrix theory. Journal of physics. A: Mathematical and general. 29(13), 3669-3677. https://doi.org/10.1088/0305-4470/29/13/031
Schlagwörter
EQUATION