Journal article
Authors list: Ionescu, RA; Ludu, A; Scheid, W
Publication year: 1996
Pages: 3669-3677
Journal: Journal of physics. A: Mathematical and general
Volume number: 29
Issue number: 13
ISSN: 0305-4470
DOI Link: https://doi.org/10.1088/0305-4470/29/13/031
Publisher: IOP Publishing Ltd
Abstract:
The eigenstates of a particle in a rectangular-well potential with appropriate boundary conditions are proved to be the standard basis of an irreducible representation of the su(1, 1) Lie algebra. The algebra operators are constructed explicitly and the energy levels and the R-function are calculated. Due to the general connection between the generators of su(1, 1) we can algebraically relate a wide class of one-dimensional potentials to the su(1, 1) Lie algebra in this framework. This algebraic approach allows us to write an algebraic parametrization for the R-function.
Citation Styles
Harvard Citation style: Ionescu, R., Ludu, A. and Scheid, W. (1996) su(1,1) algebraic description of one-dimensional potentials within the R-matrix theory, Journal of physics. A: Mathematical and general, 29(13), pp. 3669-3677. https://doi.org/10.1088/0305-4470/29/13/031
APA Citation style: Ionescu, R., Ludu, A., & Scheid, W. (1996). su(1,1) algebraic description of one-dimensional potentials within the R-matrix theory. Journal of physics. A: Mathematical and general. 29(13), 3669-3677. https://doi.org/10.1088/0305-4470/29/13/031
Keywords
EQUATION