Journal article

su(1,1) algebraic description of one-dimensional potentials within the R-matrix theory


Authors listIonescu, RA; Ludu, A; Scheid, W

Publication year1996

Pages3669-3677

JournalJournal of physics. A: Mathematical and general

Volume number29

Issue number13

ISSN0305-4470

DOI Linkhttps://doi.org/10.1088/0305-4470/29/13/031

PublisherIOP Publishing Ltd


Abstract
The eigenstates of a particle in a rectangular-well potential with appropriate boundary conditions are proved to be the standard basis of an irreducible representation of the su(1, 1) Lie algebra. The algebra operators are constructed explicitly and the energy levels and the R-function are calculated. Due to the general connection between the generators of su(1, 1) we can algebraically relate a wide class of one-dimensional potentials to the su(1, 1) Lie algebra in this framework. This algebraic approach allows us to write an algebraic parametrization for the R-function.



Citation Styles

Harvard Citation styleIonescu, R., Ludu, A. and Scheid, W. (1996) su(1,1) algebraic description of one-dimensional potentials within the R-matrix theory, Journal of physics. A: Mathematical and general, 29(13), pp. 3669-3677. https://doi.org/10.1088/0305-4470/29/13/031

APA Citation styleIonescu, R., Ludu, A., & Scheid, W. (1996). su(1,1) algebraic description of one-dimensional potentials within the R-matrix theory. Journal of physics. A: Mathematical and general. 29(13), 3669-3677. https://doi.org/10.1088/0305-4470/29/13/031



Keywords


EQUATION

Last updated on 2025-02-04 at 07:58