Journal article
Authors list: Rompf, D; Draayer, JP; Troltenier, D; Scheid, W
Publication year: 1996
Pages: 359-365
Journal: Zeitschrift für Physik A, Hadrons and Nuclei
Volume number: 354
Issue number: 4
ISSN: 0939-7922
DOI Link: https://doi.org/10.1007/s002180050058
Publisher: Springer
Abstract:
The relation between the shape variables (beta, gamma) of the collective model and the (lambda, mu) labels which define the irreducible representations of the SU(3) shell model is extended to a coupled rotor picture where one rotor represents protons (pi) and the other one neutrons (nu). The joint distribution, (beta, gamma), emerges as the overlap of the initial distributions, (beta(pi), gamma(pi)) and (beta(nu), gamma(nu)), where three Euler angles define the relative orientation of proton and neutron subsystems. It is shown analytically that the rotor construction for triaxial and axially symmetric shapes corresponds to a (lambda(pi), mu(pi) = 0) x (lambda(nu), mu(nu)) --> (lambda, mu)(rho=1) coupling in the SU(3) model.
Citation Styles
Harvard Citation style: Rompf, D., Draayer, J., Troltenier, D. and Scheid, W. (1996) Algebraic realization of a coupled rotor picture, Zeitschrift für Physik A Hadrons and Nuclei, 354(4), pp. 359-365. https://doi.org/10.1007/s002180050058
APA Citation style: Rompf, D., Draayer, J., Troltenier, D., & Scheid, W. (1996). Algebraic realization of a coupled rotor picture. Zeitschrift für Physik A Hadrons and Nuclei. 354(4), 359-365. https://doi.org/10.1007/s002180050058
Keywords
DEFORMED-NUCLEI; NEUTRON DEFORMATIONS; PROTON; SHELL-MODEL DESCRIPTION