Journal article

Algebraic realization of a coupled rotor picture


Authors listRompf, D; Draayer, JP; Troltenier, D; Scheid, W

Publication year1996

Pages359-365

JournalZeitschrift für Physik A, Hadrons and Nuclei

Volume number354

Issue number4

ISSN0939-7922

DOI Linkhttps://doi.org/10.1007/s002180050058

PublisherSpringer


Abstract
The relation between the shape variables (beta, gamma) of the collective model and the (lambda, mu) labels which define the irreducible representations of the SU(3) shell model is extended to a coupled rotor picture where one rotor represents protons (pi) and the other one neutrons (nu). The joint distribution, (beta, gamma), emerges as the overlap of the initial distributions, (beta(pi), gamma(pi)) and (beta(nu), gamma(nu)), where three Euler angles define the relative orientation of proton and neutron subsystems. It is shown analytically that the rotor construction for triaxial and axially symmetric shapes corresponds to a (lambda(pi), mu(pi) = 0) x (lambda(nu), mu(nu)) --> (lambda, mu)(rho=1) coupling in the SU(3) model.



Citation Styles

Harvard Citation styleRompf, D., Draayer, J., Troltenier, D. and Scheid, W. (1996) Algebraic realization of a coupled rotor picture, Zeitschrift für Physik A Hadrons and Nuclei, 354(4), pp. 359-365. https://doi.org/10.1007/s002180050058

APA Citation styleRompf, D., Draayer, J., Troltenier, D., & Scheid, W. (1996). Algebraic realization of a coupled rotor picture. Zeitschrift für Physik A Hadrons and Nuclei. 354(4), 359-365. https://doi.org/10.1007/s002180050058



Keywords


DEFORMED-NUCLEINEUTRON DEFORMATIONSPROTONSHELL-MODEL DESCRIPTION

Last updated on 2025-02-04 at 06:07