Journal article

PHRAGMOPLAST OF THE GREEN-ALGA SPIROGYRA IS FUNCTIONALLY DISTINCT FROM THE HIGHER-PLANT PHRAGMOPLAST


Authors listSAWITZKY, H; GROLIG, F

Publication year1995

Pages1359-1371

JournalJournal of Cell Biology

Volume number130

Issue number6

ISSN0021-9525

Open access statusGreen

DOI Linkhttps://doi.org/10.1083/jcb.130.6.1359

PublisherRockefeller University Press


Abstract

Cytokinesis in the green alga Spirogyra (Zygnemataceae) is characterized by centripetal growth of a septum, which impinges on a persistent, centrifugally expanding telophase spindle, leading to a phragmoplast-like structure of potential phylogenetic significance (Fowke, L. C., and J. D. Pickett-Heaps. 1969. J. Phycol. 5:273-281).

Combining fluorescent tagging of the cytoskeleton in situ and video-enhanced differential interference contrast microscopy of live cells, the process of cytokinesis was investigated with emphasis on cytoskeletal reorganization and concomitant redistribution of organelles. Based on a sequence of cytoskeletal arrangements and the effects of cytoskeletal inhibitors thereon, cytokinetic progression could be divided into three functional stages with respect to the contribution of microfilaments (MFs) and microtubules (MTs): (1) Initiation: in early prophase, a cross wall initial was formed independently of MFs and MTs at the presumptive site of wall growth. (2) Septum ingrowth: numerous organelles accumulated at the cross wall initial concomitant with reorganization of the extensive peripheral interphase MF array into a distinct circumferential MF array. This array guided the ingrowing septum until it contacted the expanding interzonal MT array. (3) Cross wall closure: MFs at the growing edge of the septum coaligned with and extended along the interzonal MTs toward the daughter nuclei. Thus, actin-based transportation of small organelles during this third stage occurred, in part, along a scaffold previously deployed in space by MTs. Displacement of the nuclei-associated interzonal MT array by centrifugation and depolymerization of the phragmoplast-like structure showed that the success of cytokinesis at the third stage depends on the interaction of both MF and MT cytoskeletons. Important features of the phragmoplast-like structure in Spirogyra were different from the higher plant phragmoplast: in particular, MFs were responsible for the positioning of organelles at the fusion site, contrary to the proposed role of MTs in the higher plant phragmoplast.




Citation Styles

Harvard Citation styleSAWITZKY, H. and GROLIG, F. (1995) PHRAGMOPLAST OF THE GREEN-ALGA SPIROGYRA IS FUNCTIONALLY DISTINCT FROM THE HIGHER-PLANT PHRAGMOPLAST, Journal of Cell Biology, 130(6), pp. 1359-1371. https://doi.org/10.1083/jcb.130.6.1359

APA Citation styleSAWITZKY, H., & GROLIG, F. (1995). PHRAGMOPLAST OF THE GREEN-ALGA SPIROGYRA IS FUNCTIONALLY DISTINCT FROM THE HIGHER-PLANT PHRAGMOPLAST. Journal of Cell Biology. 130(6), 1359-1371. https://doi.org/10.1083/jcb.130.6.1359



Keywords


DIVISIONF-ACTINMICROTUBULE-ASSOCIATED PROTEINSMOUGEOTIAPREPROPHASE BANDSPINDLETOBACCO BY-2 CELLSZYGNEMATACEAE

Last updated on 2025-10-06 at 12:19