Journalartikel

STRONGLY REGULAR CAYLEY-GRAPHS WITH LAMBDA-MU=-1


AutorenlisteARASU, KT; JUNGNICKEL, D; MA, SL; POTT, A

Jahr der Veröffentlichung1994

Seiten116-125

ZeitschriftJournal of Combinatorial Theory, Series A

Bandnummer67

Heftnummer1

ISSN0097-3165

DOI Linkhttps://doi.org/10.1016/0097-3165(94)90007-8

VerlagElsevier


Abstract
The classification problem for strongly regular graphs for which the parameters are related by the equation lambda - mu = - 1 is still completely open. Restricting attention to those examples which are simultaneously Cayley graphs based on an abelian group (which are equivalent to abelian partial difference sets with lambda - mu = - 1), we obtain the following classification result: any such graph is-up to complementation-either of Paley type (i.e., it has parameters (nu, (nu - 1)/2, (nu - 5)/4, (nu - 1)/4)) or it has parameters (243, 22, 1, 2). The proof of this theorem combines recent results on the structure of partial difference sets with some results concerning diophantine equations. Our theorem has interesting applications to the theory of divisible difference sets, since it allows us to improve previous classification results concerning abalian DDS's satisfying k - lambda1 = 1 and reversible abelian DDS's. (C) 1994 Academic Press, Inc.



Zitierstile

Harvard-ZitierstilARASU, K., JUNGNICKEL, D., MA, S. and POTT, A. (1994) STRONGLY REGULAR CAYLEY-GRAPHS WITH LAMBDA-MU=-1, Journal of Combinatorial Theory, Series A, 67(1), pp. 116-125. https://doi.org/10.1016/0097-3165(94)90007-8

APA-ZitierstilARASU, K., JUNGNICKEL, D., MA, S., & POTT, A. (1994). STRONGLY REGULAR CAYLEY-GRAPHS WITH LAMBDA-MU=-1. Journal of Combinatorial Theory, Series A. 67(1), 116-125. https://doi.org/10.1016/0097-3165(94)90007-8



Schlagwörter


DESIGNSDIVISIBLE DIFFERENCE SETSMULTIPLIER -1

Zuletzt aktualisiert 2025-02-04 um 06:53