Journalartikel
Autorenliste: CUYPERS, H; MEIXNER, T
Jahr der Veröffentlichung: 1993
Seiten: 375-381
Zeitschrift: Journal of Algebraic Combinatorics
Bandnummer: 2
Heftnummer: 4
ISSN: 0925-9899
Open Access Status: Bronze
DOI Link: https://doi.org/10.1023/A:1022471817341
Verlag: Springer
Let (P, L, *) be a near polygon having s + 1 points per line, s > 1, and suppose k is a field. Let V(k) be the k-vector space with basis {v(p) \ P is-an-element-of P}. Then the subspace generated by the vectors v(l) = SIGMA(p*l), v(p), where l is-an-element-of L, has codimension at least 2 in V(k). This observation is used in two ways. First we derive the existence of certain diagram geometries with flag transitive automorphism group, and secondly, we show that any finite near polygon with 3 points per line can be embedded in an affine GF(3)-space.
Abstract:
Zitierstile
Harvard-Zitierstil: CUYPERS, H. and MEIXNER, T. (1993) SOME EXTENSIONS AND EMBEDDINGS OF NEAR POLYGONS, Journal of Algebraic Combinatorics, 2(4), pp. 375-381. https://doi.org/10.1023/A:1022471817341
APA-Zitierstil: CUYPERS, H., & MEIXNER, T. (1993). SOME EXTENSIONS AND EMBEDDINGS OF NEAR POLYGONS. Journal of Algebraic Combinatorics. 2(4), 375-381. https://doi.org/10.1023/A:1022471817341
Schlagwörter
AFFINE EMBEDDING; DIAGRAM GEOMETRY; NEAR POLYGON