Journalartikel

SOME EXTENSIONS AND EMBEDDINGS OF NEAR POLYGONS


AutorenlisteCUYPERS, H; MEIXNER, T

Jahr der Veröffentlichung1993

Seiten375-381

ZeitschriftJournal of Algebraic Combinatorics

Bandnummer2

Heftnummer4

ISSN0925-9899

Open Access StatusBronze

DOI Linkhttps://doi.org/10.1023/A:1022471817341

VerlagSpringer


Abstract

Let (P, L, *) be a near polygon having s + 1 points per line, s > 1, and suppose k is a field. Let V(k) be the k-vector space with basis {v(p) \ P is-an-element-of P}. Then the subspace generated by the vectors v(l) = SIGMA(p*l), v(p), where l is-an-element-of L, has codimension at least 2 in V(k).

This observation is used in two ways. First we derive the existence of certain diagram geometries with flag transitive automorphism group, and secondly, we show that any finite near polygon with 3 points per line can be embedded in an affine GF(3)-space.




Zitierstile

Harvard-ZitierstilCUYPERS, H. and MEIXNER, T. (1993) SOME EXTENSIONS AND EMBEDDINGS OF NEAR POLYGONS, Journal of Algebraic Combinatorics, 2(4), pp. 375-381. https://doi.org/10.1023/A:1022471817341

APA-ZitierstilCUYPERS, H., & MEIXNER, T. (1993). SOME EXTENSIONS AND EMBEDDINGS OF NEAR POLYGONS. Journal of Algebraic Combinatorics. 2(4), 375-381. https://doi.org/10.1023/A:1022471817341



Schlagwörter


AFFINE EMBEDDINGDIAGRAM GEOMETRYNEAR POLYGON


Nachhaltigkeitsbezüge


Zuletzt aktualisiert 2025-10-06 um 12:18