Journal article

TRIPLE-SYSTEMS IN PG(2, Q)


Authors listJUNGNICKEL, D; VANSTONE, S

Publication year1991

Pages131-135

JournalDiscrete Mathematics

Volume number92

Issue number1-3

ISSN0012-365X

Open access statusBronze

DOI Linkhttps://doi.org/10.1016/0012-365X(91)90274-6

PublisherElsevier


Abstract
Let G be a cyclic Singer group for the Desarguesian projective plane P = PG(2, q). Then there exists a cyclic Steiner triple system on the point set of P which is invariant under G and the blocks of which are triangles of P.



Citation Styles

Harvard Citation styleJUNGNICKEL, D. and VANSTONE, S. (1991) TRIPLE-SYSTEMS IN PG(2, Q), Discrete Mathematics, 92(1-3), pp. 131-135. https://doi.org/10.1016/0012-365X(91)90274-6

APA Citation styleJUNGNICKEL, D., & VANSTONE, S. (1991). TRIPLE-SYSTEMS IN PG(2, Q). Discrete Mathematics. 92(1-3), 131-135. https://doi.org/10.1016/0012-365X(91)90274-6



SDG Areas


Last updated on 2025-10-06 at 12:16