Journal article
Authors list: Grau, Veronika; Richter, Katrin; Hone, Aric J.; McIntosh, J. Michael
Publication year: 2019
Journal: Frontiers in Pharmacology
Volume number: 9
ISSN: 1663-9812
Open access status: Gold
DOI Link: https://doi.org/10.3389/fphar.2018.01499
Publisher: Frontiers Media
Venomous marine snails of the genus Conus employ small peptides to capture prey, mainly osteichthyes, mollusks, and worms. A subset of these peptides known as α-conotoxins, are antagonists of nicotinic acetylcholine receptors (nAChRs). These disulfide-rich peptides provide a large number of evolutionarily refined templates that can be used to develop conopeptides that are highly selective for the various nAChR subtypes. Two such conopeptides, namely [V11L;V16D]ArIB and RgIA4, have been engineered to selectively target mammalian α7∗ and α9∗ nAChRs, respectively, and have been used to study the functional roles of these subtypes in immune cells. Unlike in neurons and cochlear hair cells, where α7∗ and α9∗ nAChRs, respectively, function as ligand-gated ion channels, in immune cells ligand-evoked ion currents have not been demonstrated. Instead, different metabotropic functions of α7∗ and α9∗ nAChRs have been described in monocytic cells including the inhibition of ATP-induced ion currents, inflammasome activation, and interleukin-1β (IL-1β) release. In addition to conventional nAChR agonists, diverse compounds containing a phosphocholine group inhibit monocytic IL-1β release and include dipalmitoyl phosphatidylcholine, palmitoyl lysophosphatidylcholine, glycerophosphocholine, phosphocholine, phosphocholine-decorated lipooligosaccharides from Haemophilus influenzae, synthetic phosphocholine-modified bovine serum albumin, and the phosphocholine-binding C-reactive protein. In monocytic cells, the effects of [V11L;V16D]ArIB and RgIA4 suggested that activation of nAChRs containing α9, α7, and/or α10 subunits inhibits ATP-induced IL-1β release. These results have been corroborated utilizing gene-deficient mice and small interfering RNA. Targeted re-engineering of native α-conotoxins has resulted in excellent tools for nAChR research as well as potential therapeutics. ∗indicates possible presence of additional subunits.
Abstract:
Citation Styles
Harvard Citation style: Grau, V., Richter, K., Hone, A. and McIntosh, J. (2019) Conopeptides [V11L;V16D]ArIB and RgIA4: Powerful Tools for the Identification of Novel Nicotinic Acetylcholine Receptors in Monocytes, Frontiers in Pharmacology, 9, Article 1499. https://doi.org/10.3389/fphar.2018.01499
APA Citation style: Grau, V., Richter, K., Hone, A., & McIntosh, J. (2019). Conopeptides [V11L;V16D]ArIB and RgIA4: Powerful Tools for the Identification of Novel Nicotinic Acetylcholine Receptors in Monocytes. Frontiers in Pharmacology. 9, Article 1499. https://doi.org/10.3389/fphar.2018.01499