Konferenzpaper
Autorenliste: Strickert, M; Bojer, T; Hammer, B
Jahr der Veröffentlichung: 2001
Seiten: 677-683
Zeitschrift: Lecture notes in computer science
Bandnummer: 2130
ISSN: 0302-9743
ISBN: 3-540-42486-5
eISSN: 1611-3349
DOI Link: https://doi.org/10.1007/3-540-44668-0_94
Konferenz: International Conference on Artificial Neural Networks (ICANN 2001)
Verlag: Springer
Serientitel: Lecture Notes in Computer Science
An application of the recently proposed generalized relevance learning vector quantization (GRLVQ) to the analysis and modeling of time series data is presented. We use GRLVQ for two tasks: first, for obtaining a phase space embedding of a scalar time series, and second, for short term and long term data prediction. The proposed embedding method is tested with a signal from the well-known Lorenz system. Afterwards, it is applied to daily lysimeter observations of water runoff. A one-step prediction of the runoff dynamic is obtained from the classification of high dimensional subseries data vectors, from which a promising technique for long term forecasts is derived.
Abstract:
Zitierstile
Harvard-Zitierstil: Strickert, M., Bojer, T. and Hammer, B. (2001) Generalized relevance LVQ for time series, Lecture notes in computer science, 2130, pp. 677-683. https://doi.org/10.1007/3-540-44668-0_94
APA-Zitierstil: Strickert, M., Bojer, T., & Hammer, B. (2001). Generalized relevance LVQ for time series. Lecture notes in computer science. 2130, 677-683. https://doi.org/10.1007/3-540-44668-0_94