Konferenzpaper

Generalized relevance LVQ for time series


AutorenlisteStrickert, M; Bojer, T; Hammer, B

Jahr der Veröffentlichung2001

Seiten677-683

ZeitschriftLecture notes in computer science

Bandnummer2130

ISSN0302-9743

ISBN3-540-42486-5

eISSN1611-3349

DOI Linkhttps://doi.org/10.1007/3-540-44668-0_94

KonferenzInternational Conference on Artificial Neural Networks (ICANN 2001)

VerlagSpringer

SerientitelLecture Notes in Computer Science


Abstract

An application of the recently proposed generalized relevance learning vector quantization (GRLVQ) to the analysis and modeling of time series data is presented. We use GRLVQ for two tasks: first, for obtaining a phase space embedding of a scalar time series, and second, for short term and long term data prediction. The proposed embedding method is tested with a signal from the well-known Lorenz system. Afterwards, it is applied to daily lysimeter observations of water runoff. A one-step prediction of the runoff dynamic is obtained from the classification of high dimensional subseries data vectors, from which a promising technique for long term forecasts is derived.




Autoren/Herausgeber




Zitierstile

Harvard-ZitierstilStrickert, M., Bojer, T. and Hammer, B. (2001) Generalized relevance LVQ for time series, Lecture notes in computer science, 2130, pp. 677-683. https://doi.org/10.1007/3-540-44668-0_94

APA-ZitierstilStrickert, M., Bojer, T., & Hammer, B. (2001). Generalized relevance LVQ for time series. Lecture notes in computer science. 2130, 677-683. https://doi.org/10.1007/3-540-44668-0_94


Zuletzt aktualisiert 2025-06-06 um 11:27