Konferenzpaper

Rule extraction from self-organizing networks


AutorenlisteHammer, B; Rechtien, A; Strickert, M; Villmann, T

Jahr der Veröffentlichung2002

Seiten877-883

ZeitschriftLecture notes in computer science

Bandnummer2415

ISSN0302-9743

ISBN3-540-44074-7

DOI Linkhttps://doi.org/10.1007/3-540-46084-5_142

Konferenz12th International Conference on Artifical Neural Networks (ICANN 2002)

VerlagSpringer


Abstract
Generalized relevance learning vector quantization (GRLVQ) [4] constitutes a prototype based clustering algorithm based on LVQ [5] with energy function and adaptive metric. We propose a method for extracting logical rules from a trained GRLVQ-network. Real valued attributes are automatically transformed to symbolic values. The rules are given in the form of a decision tree yielding several advantages: hybrid symbolic/subsymbolic descriptions can be obtained as an alternative and the complexity of the rules can be controlled.



Autoren/Herausgeber




Zitierstile

Harvard-ZitierstilHammer, B., Rechtien, A., Strickert, M. and Villmann, T. (2002) Rule extraction from self-organizing networks, Lecture notes in computer science, 2415, pp. 877-883. https://doi.org/10.1007/3-540-46084-5_142

APA-ZitierstilHammer, B., Rechtien, A., Strickert, M., & Villmann, T. (2002). Rule extraction from self-organizing networks. Lecture notes in computer science. 2415, 877-883. https://doi.org/10.1007/3-540-46084-5_142


Zuletzt aktualisiert 2025-06-06 um 12:08