Konferenzpaper

Posterior regularization and attribute assessment of under-determined linear mappings


AutorenlisteStrickert, Marc; Seifert, Michael

Erschienen inESANN 2012, 20th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning

HerausgeberlisteVerleysen, Michel

Jahr der Veröffentlichung2012

Seiten67-72

ISBN978-2-87419-047-6

URLhttps://www.esann.org/sites/default/files/proceedings/legacy/es2012-4.pdf

Konferenz20th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning


Abstract

Linear mappings are omnipresent in data processing analysis ranging from regression to distance metric learning. The interpretation of coefficients from under-determined mappings raises an unexpected challenge when the original modeling goal does not impose regularization. Therefore, a general posterior regularization strategy is presented for inducing unique results, and additional sensitivity analysis enables attribute assessment for facilitating model interpretation. An application to infrared spectra reects data smoothness and indicates improved generalization.




Autoren/Herausgeber




Zitierstile

Harvard-ZitierstilStrickert, M. and Seifert, M. (2012) Posterior regularization and attribute assessment of under-determined linear mappings, in Verleysen, M. (ed.) ESANN 2012, 20th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning. Louvain-la-Neuve: Ciaco. pp. 67-72. https://www.esann.org/sites/default/files/proceedings/legacy/es2012-4.pdf

APA-ZitierstilStrickert, M., & Seifert, M. (2012). Posterior regularization and attribute assessment of under-determined linear mappings. In Verleysen, M. (Ed.), ESANN 2012, 20th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning. (pp. 67-72). Ciaco. https://www.esann.org/sites/default/files/proceedings/legacy/es2012-4.pdf


Zuletzt aktualisiert 2025-06-06 um 15:25