Konferenzpaper
Autorenliste: Strickert, Marc; Seifert, Michael
Erschienen in: ESANN 2012, 20th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning
Herausgeberliste: Verleysen, Michel
Jahr der Veröffentlichung: 2012
Seiten: 67-72
ISBN: 978-2-87419-047-6
URL: https://www.esann.org/sites/default/files/proceedings/legacy/es2012-4.pdf
Konferenz: 20th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning
Linear mappings are omnipresent in data processing analysis ranging from regression to distance metric learning. The interpretation of coefficients from under-determined mappings raises an unexpected challenge when the original modeling goal does not impose regularization. Therefore, a general posterior regularization strategy is presented for inducing unique results, and additional sensitivity analysis enables attribute assessment for facilitating model interpretation. An application to infrared spectra reects data smoothness and indicates improved generalization.
Abstract:
Zitierstile
Harvard-Zitierstil: Strickert, M. and Seifert, M. (2012) Posterior regularization and attribute assessment of under-determined linear mappings, in Verleysen, M. (ed.) ESANN 2012, 20th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning. Louvain-la-Neuve: Ciaco. pp. 67-72. https://www.esann.org/sites/default/files/proceedings/legacy/es2012-4.pdf
APA-Zitierstil: Strickert, M., & Seifert, M. (2012). Posterior regularization and attribute assessment of under-determined linear mappings. In Verleysen, M. (Ed.), ESANN 2012, 20th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning. (pp. 67-72). Ciaco. https://www.esann.org/sites/default/files/proceedings/legacy/es2012-4.pdf