Journal article

The thioredoxin specificity of Drosophila GPx: A paradigm for a peroxiredoxin-like mechanism of many glutathione peroxidases


Authors listMaiorino, M; Ursini, F; Bosello, V; Toppo, S; Tosatto, SCE; Mauri, P; Becker, K; Roveri, A; Bulato, C; Benazzi, L; De Palma, A; Flohe, L

Publication year2007

Pages1033-1046

JournalJournal of Molecular Biology

Volume number365

Issue number4

ISSN0022-2836

eISSN1089-8638

Open access statusBronze

DOI Linkhttps://doi.org/10.1016/j.jmb.2006.10.033

PublisherElsevier


Abstract
Some members of the glutathione peroxidase (GPx) family have been reported to accept thioredoxin as reducing substrate. However, the selenocysteine-containing ones oxidise thioredoxin (Trx), if at all, at extremely slow rates. In contrast, the Cys homolog of Drosophila melanogaster exhibits a clear preference for Trx, the net forward rate constant, k'(+2), for reduction by Trx being 1.5 x 10(6) M-1 s(-1), but only 5.4 M-1 s(-1) for glutathione. Like other CysGPxs with thioredoxin peroxidase activity, Drosophila melanogaster (Dm)GPx oxidized by H2O2 contained an intra-molecular disulfide bridge between the active-site cysteine (C45; C-P) and C91. Site-directed mutagenesis of C91 in DmGPx abrogated Trx peroxidase activity, but increased the rate constant for glutathione by two orders of magnitude. In contrast, a replacement of C74 by Ser or Ala only marginally affected activity and specificity of DmGPx. Furthermore, LCMS/MS analysis of oxidized DmGPx exposed to a reduced Trx C35S mutant yielded a dead-end intermediate containing a disulfide between Trx C32 and DmGPx C91. Thus, the catalytic mechanism of DmGPx, unlike that of selenocysteine (Sec)GPxs, involves formation of an internal disulfide that is pivotal to the interaction with Trx. Hereby C91, like the analogous second cysteine in 2-cysteine peroxiredoxins, adopts the role of a "resolving" cysteine (C-R). Molecular modeling and homology considerations based on 450 GPxs suggest peculiar features to determine Trx specificity: (i) a nonaligned second Cys within the fourth helix that acts as C-R; (ii) deletions of the subunit interfaces typical of tetrameric GPxs leading to flexibility of the C-R-Containing loop. Based of these characteristics, most of the nonmammalian CysGPxs, in functional terms, are thioredoxin peroxidases. (c) 2006 Elsevier Ltd. All rights reserved.



Citation Styles

Harvard Citation styleMaiorino, M., Ursini, F., Bosello, V., Toppo, S., Tosatto, S., Mauri, P., et al. (2007) The thioredoxin specificity of Drosophila GPx: A paradigm for a peroxiredoxin-like mechanism of many glutathione peroxidases, Journal of Molecular Biology, 365(4), pp. 1033-1046. https://doi.org/10.1016/j.jmb.2006.10.033

APA Citation styleMaiorino, M., Ursini, F., Bosello, V., Toppo, S., Tosatto, S., Mauri, P., Becker, K., Roveri, A., Bulato, C., Benazzi, L., De Palma, A., & Flohe, L. (2007). The thioredoxin specificity of Drosophila GPx: A paradigm for a peroxiredoxin-like mechanism of many glutathione peroxidases. Journal of Molecular Biology. 365(4), 1033-1046. https://doi.org/10.1016/j.jmb.2006.10.033


Last updated on 2025-10-06 at 09:40