Journalartikel

Intracellular positioning of isoforms explains an unusually large adenylate kinase gene family in the parasite Trypanosoma brucei


AutorenlisteGinger, ML; Ngazoa, ES; Pereira, CA; Pullen, TJ; Kabiri, M; Becker, K; Gull, K; Steverding, D

Jahr der Veröffentlichung2005

Seiten11781-11789

ZeitschriftJournal of Biological Chemistry

Bandnummer280

Heftnummer12

ISSN0021-9258

eISSN1083-351X

Open Access StatusHybrid

DOI Linkhttps://doi.org/10.1074/jbc.M413821200

VerlagElsevier


Abstract
Adenylate kinases occur classically as cytoplasmic and mitochondrial enzymes, but the expression of seven adenylate kinases in the flagellated protozoan parasite Trypanosoma brucei (order, Kinetoplastida; family, Trypanosomatidae) easily exceeds the number of isoforms previously observed within a single cell and raises questions as to their location and function. We show that a requirement to target adenylate kinase into glycosomes, which are unique kinetoplastid-specific microbodies of the peroxisome class in which many reactions of carbohydrate metabolism are compartmentalized, and two different flagellar structures as well as cytoplasm and mitochondrion explains the expansion of this gene family in trypanosomes. The three isoforms that are selectively built into either the flagellar axoneme or the extra-axonemal paraflagellar rod, which is essential for motility, all contain long N-terminal extensions. Biochemical analysis of the only short form trypanosome adenylate kinase revealed that this enzyme catalyzes phosphotransfer of gamma-phosphate from ATP to AMP, CMP, and UMP acceptors; its high activity and specificity toward CMP is likely to reflect an adaptation to very low intracellular cytidine nucleotide pools. Analysis of some of the phosphotransfer network using RNA interference suggests considerable complexity within the homeostasis of cellular energetics. The anchoring of specific adenylate kinases within two distinct flagellar structures provides a paradigm for metabolic organization and efficiency in other flagellates.



Zitierstile

Harvard-ZitierstilGinger, M., Ngazoa, E., Pereira, C., Pullen, T., Kabiri, M., Becker, K., et al. (2005) Intracellular positioning of isoforms explains an unusually large adenylate kinase gene family in the parasite Trypanosoma brucei, Journal of Biological Chemistry, 280(12), pp. 11781-11789. https://doi.org/10.1074/jbc.M413821200

APA-ZitierstilGinger, M., Ngazoa, E., Pereira, C., Pullen, T., Kabiri, M., Becker, K., Gull, K., & Steverding, D. (2005). Intracellular positioning of isoforms explains an unusually large adenylate kinase gene family in the parasite Trypanosoma brucei. Journal of Biological Chemistry. 280(12), 11781-11789. https://doi.org/10.1074/jbc.M413821200



Nachhaltigkeitsbezüge


Zuletzt aktualisiert 2025-10-06 um 09:33