Journal article

Potential-Induced Pitting Corrosion of an IrO2(110)-RuO2(110)/Ru(0001) Model Electrode under Oxygen Evolution Reaction Conditions


Authors listWeber, T; Pfrommer, J; Abb, MJS; Herd, B; Khalid, O; Rohnke, M; Lakner, PH; Evertsson, J; Volkov, S; Bertram, F; Znaiguia, R; Carla, F; Vonk, V; Lundgren, E; Stierle, A; Over, H

Publication year2019

Pages6530-6539

JournalACS Catalysis

Volume number9

Issue number7

ISSN2155-5435

Open access statusGreen

DOI Linkhttps://doi.org/10.1021/acscatal.9b01402

PublisherAmerican Chemical Society


Abstract
Sophisticated IrO2(110)-based model electrodes are prepared by deposition of a 10 nm thick single-crystalline IrO2(110) layer supported on a structure-directing RuO2(110)/Ru(0001) template, exposing a regular array of mesoscopic rooflike structures. With this model electrode together with the dedicated in situ synchrotron based techniques (SXRD, XRR) and ex situ characterization techniques (SEM, ToF-SIMS, XPS), the corrosion process of IrO2(110) in an acidic environment (pH 0.4) is studied on different length scales. Potential-induced pitting corrosion starts at 1.48 V vs SHE and is initiated at so-called surface grain boundaries, where three rotational domains of IrO2(110) meet. The most surprising result is, however, that even when the electrode potential is increased to 1.94 V vs SHE 60-70% of the IrO2 film still stays intact down to the mesoscale and atomic scale and no uniform thinning of the IrO2(110) layer is encountered. Neither flat IrO2(110) terraces nor single steps are attacked. Ultrathin single crystalline IrO2(110) layers seem to be much more stable to anodic corrosion than hitherto expected.



Authors/Editors




Citation Styles

Harvard Citation styleWeber, T., Pfrommer, J., Abb, M., Herd, B., Khalid, O., Rohnke, M., et al. (2019) Potential-Induced Pitting Corrosion of an IrO2(110)-RuO2(110)/Ru(0001) Model Electrode under Oxygen Evolution Reaction Conditions, ACS Catalysis, 9(7), pp. 6530-6539. https://doi.org/10.1021/acscatal.9b01402

APA Citation styleWeber, T., Pfrommer, J., Abb, M., Herd, B., Khalid, O., Rohnke, M., Lakner, P., Evertsson, J., Volkov, S., Bertram, F., Znaiguia, R., Carla, F., Vonk, V., Lundgren, E., Stierle, A., & Over, H. (2019). Potential-Induced Pitting Corrosion of an IrO2(110)-RuO2(110)/Ru(0001) Model Electrode under Oxygen Evolution Reaction Conditions. ACS Catalysis. 9(7), 6530-6539. https://doi.org/10.1021/acscatal.9b01402


Last updated on 2025-10-06 at 11:02