Journal article

Gas Evolution in Lithium-Ion Batteries: Solid versus Liquid Electrolyte


Authors listStrauss, F; Teo, JH; Schiele, A; Bartsch, T; Hatsukade, T; Hartmann, P; Janek, J; Brezesinski, T

Publication year2020

Pages20462-20468

JournalACS Applied Materials & Interfaces

Volume number12

Issue number18

ISSN1944-8244

Open access statusGreen

DOI Linkhttps://doi.org/10.1021/acsami.0c02872

PublisherAmerican Chemical Society


Abstract
Gas evolution in conventional lithium-ion batteries using Ni-rich layered oxide cathode materials presents a serious issue that is responsible for performance decay and safety concerns, among others. Recent findings revealed that gas evolution also occurred in bulk-type solid-state batteries. To further clarify the effect that the electrolyte has on gassing, we report in this work-to the best of our knowledge-the first study comparing gas evolution in lithium-ion batteries with NCM622 cathode material and different electrolyte types, specifically solid (beta-Li3PS4 and Li6PS5Cl) versus liquid (LP57). Using isotopic labeling, acid titration, and in situ gas analysis, we show the presence of O-2 and CO2 evolution in both systems, albeit with different cumulative amounts, and possible SO2 evolution for the lithium thiophosphate-based cells. Our results demonstrate the importance of considering gas evolution in solid-state batteries, especially the formation and release of highly corrosive SO2, due to side reactions with the electrolyte.



Citation Styles

Harvard Citation styleStrauss, F., Teo, J., Schiele, A., Bartsch, T., Hatsukade, T., Hartmann, P., et al. (2020) Gas Evolution in Lithium-Ion Batteries: Solid versus Liquid Electrolyte, ACS Applied Materials & Interfaces, 12(18), pp. 20462-20468. https://doi.org/10.1021/acsami.0c02872

APA Citation styleStrauss, F., Teo, J., Schiele, A., Bartsch, T., Hatsukade, T., Hartmann, P., Janek, J., & Brezesinski, T. (2020). Gas Evolution in Lithium-Ion Batteries: Solid versus Liquid Electrolyte. ACS Applied Materials & Interfaces. 12(18), 20462-20468. https://doi.org/10.1021/acsami.0c02872


Last updated on 2025-10-06 at 11:11