Journal article

Evaluation of the safety and efficacy of lactic acid to reduce microbiological surface contamination on carcases from kangaroos, wild pigs, goats and sheep


Authors listLambré, C; Baviera, JMB; Bolognesi, C; Chesson, A; Cocconcelli, PS; Crebelli, R; Gott, DM; Grob, K; Lampi, E; Rivière, G; Steffensen, IL; Tlustos, C; Van Loveren, H; Vernis, L; Zorn, H; Bolton, D; Bover-Cid, S; de Knecht, J; Peixe, L; Skandamis, P; Martino, C; Messens, W; Tard, A; Mortensen, A

Publication year2022

Pagese07265-

JournalEFSA Journal

Volume number20

Issue number5

DOI Linkhttps://doi.org/10.2903/j.efsa.2022.7265

PublisherWiley


Abstract
Studies evaluating the safety and efficacy of lactic acid to reduce microbiological surface contamination from carcases of wild game (i.e. kangaroos and wild pigs) and small stock (i.e. goats and sheep) before chilling at the slaughterhouse were assessed. Wild pig and kangaroo hide-on carcases may have been chilled before they arrive at the slaughterhouse and are treated after removal of the hides. Lactic acid solutions (2-5%) are applied to the carcases at temperatures of up to 55 degrees C by spraying or misting. The treatment lasts 6-7 s per carcass side. The Panel concluded that: [1] the treatment is of no safety concern, provided that the lactic acid complies with the European Union specifications for food additives; [2] based on the available evidence, it was not possible to conclude on the efficacy of spraying or misting lactic acid on kangaroo, wild pig, goats and sheep carcases; [3] treatment of the above-mentioned carcases with lactic acid may induce reduced susceptibility to the same substance, but this can be minimised; there is currently no evidence that prior exposure of food-borne pathogens to lactic acid leads to the occurrence of resistance levels that compromise antimicrobial therapy; and [4] the release of lactic acid is not of concern for the environment, assuming that wastewaters released by the slaughterhouses are treated on-site, if necessary, to counter the potentially low pH caused by lactic acid, in compliance with local rules.



Authors/Editors




Citation Styles

Harvard Citation styleLambré, C., Baviera, J., Bolognesi, C., Chesson, A., Cocconcelli, P., Crebelli, R., et al. (2022) Evaluation of the safety and efficacy of lactic acid to reduce microbiological surface contamination on carcases from kangaroos, wild pigs, goats and sheep, EFSA Journal, 20(5), p. e07265. https://doi.org/10.2903/j.efsa.2022.7265

APA Citation styleLambré, C., Baviera, J., Bolognesi, C., Chesson, A., Cocconcelli, P., Crebelli, R., Gott, D., Grob, K., Lampi, E., Rivière, G., Steffensen, I., Tlustos, C., Van Loveren, H., Vernis, L., Zorn, H., Bolton, D., Bover-Cid, S., de Knecht, J., Peixe, L., ...Mortensen, A. (2022). Evaluation of the safety and efficacy of lactic acid to reduce microbiological surface contamination on carcases from kangaroos, wild pigs, goats and sheep. EFSA Journal. 20(5), e07265. https://doi.org/10.2903/j.efsa.2022.7265


Last updated on 2025-21-05 at 16:46