Journal article

Enhancing the Dendrite Tolerance of NaSICON Electrolytes by Suppressing Edge Growth of Na Electrode along Ceramic Surface


Authors listMa, QL; Ortmann, T; Yang, AK; Sebold, D; Burkhardt, S; Rohnke, M; Tietz, F; Fattakhova-Rohlfing, D; Janek, J; Guillon, O

Publication year2022

JournalAdvanced Energy Materials

Volume number12

Issue number40

ISSN1614-6832

eISSN1614-6840

Open access statusHybrid

DOI Linkhttps://doi.org/10.1002/aenm.202201680

PublisherWiley


Abstract
Solid-state sodium batteries (SSNBs) have attracted extensive interest due to their high safety on the cell level, abundant material resources, and low cost. One of the major challenges in the development of SSNBs is the suppression of sodium dendrites during electrochemical cycling. The solid electrolyte Na3.4Zr2Si2.4P0.6O12 (NZSP) exhibits one of the best dendrite tolerances of all reported solid electrolytes (SEs), while it also shows interesting dendrite growth along the surface of NZSP rather than through the ceramic. Operando investigations and in situ scanning electron microscopy microelectrode experiments are conducted to reveal the Na plating mechanism. By blocking the surface from atmosphere access with a sodium-salt coating, surface-dendrite formation is prevented. The dendrite tolerance of Na | NZSP | Na symmetric cells is then increased to a critical current density (CCD) of 14 mA cm(-2) and galvanostatic cycling of 1 mA cm(-2) and 1 mAh cm(-2) (half cycle) is demonstrated for more than 1000 h. Even if the current density is increased to 3 mA cm(-2) or 5 mA cm(-2), symmetric cells can still be operated for 180 h or 12 h, respectively.



Citation Styles

Harvard Citation styleMa, Q., Ortmann, T., Yang, A., Sebold, D., Burkhardt, S., Rohnke, M., et al. (2022) Enhancing the Dendrite Tolerance of NaSICON Electrolytes by Suppressing Edge Growth of Na Electrode along Ceramic Surface, Advanced Energy Materials, 12(40), Article 2201680. https://doi.org/10.1002/aenm.202201680

APA Citation styleMa, Q., Ortmann, T., Yang, A., Sebold, D., Burkhardt, S., Rohnke, M., Tietz, F., Fattakhova-Rohlfing, D., Janek, J., & Guillon, O. (2022). Enhancing the Dendrite Tolerance of NaSICON Electrolytes by Suppressing Edge Growth of Na Electrode along Ceramic Surface. Advanced Energy Materials. 12(40), Article 2201680. https://doi.org/10.1002/aenm.202201680


Last updated on 2025-10-06 at 11:43