Journalartikel

The convergence of estimators based on heuristics: theory and application to a GARCH model


AutorenlisteWinker, P; Maringer, D

Jahr der Veröffentlichung2009

Seiten533-550

ZeitschriftComputational Statistics

Bandnummer24

Heftnummer3

ISSN0943-4062

eISSN1613-9658

DOI Linkhttps://doi.org/10.1007/s00180-008-0145-5

VerlagSpringer


Abstract
Econometric theory describes estimators and their properties, e.g., the convergence of maximum likelihood estimators. However, it is ignored that often the estimators cannot be computed using standard tools, e.g., due to multiple local optima. Then, optimization heuristics might be helpful. The additional random component of heuristics might be analyzed together with the econometric model. A formal framework is proposed for the analysis of the joint convergence of estimator and stochastic optimization algorithm. In an application to a GARCH model, actual rates of convergence are estimated by simulation. The overall quality of the estimates improves compared to conventional approaches.



Autoren/Herausgeber




Zitierstile

Harvard-ZitierstilWinker, P. and Maringer, D. (2009) The convergence of estimators based on heuristics: theory and application to a GARCH model, Computational Statistics, 24(3), pp. 533-550. https://doi.org/10.1007/s00180-008-0145-5

APA-ZitierstilWinker, P., & Maringer, D. (2009). The convergence of estimators based on heuristics: theory and application to a GARCH model. Computational Statistics. 24(3), 533-550. https://doi.org/10.1007/s00180-008-0145-5


Zuletzt aktualisiert 2025-16-06 um 11:13