Contribution in an anthology

The Threshold Accepting Optimisation Algorithm in Economics and Statistics


Authors listWinker, P.; Maringer, D.

Appeared inOptimisation, Econometric and Financial Analysis

Editor listKontoghiorghes, E.J.; Gatu, C.

Publication year2007

Pages107-125

ISBN978-3-540-36625-6

eISBN978-3-540-36626-3

DOI Linkhttps://doi.org/10.1007/3-540-36626-1_6

Title of seriesAdvances in Computational Management Science

Number in series9


Abstract

Threshold Accepting (TA) is a powerful optimisation heuristic from the class of evolutionary algorithms. Using several examples from economics, econometrics and statistics, the issues related to implementations of TA are discussed and demonstrated. A problem specific implementation involves the definition of a local structure on the search space, the analysis of the objective function and of constraints, if relevant, and the generation of a sequence of threshold values to be used in the acceptance-rejection-step of the algorithm. A routine approach towards setting these implementation specific details for TA is presented, which will be partially data driven. Furthermore, fine tuning of parameters and the cost and benefit of restart versions of stochastic optimisation heuristics will be discussed.




Authors/Editors




Citation Styles

Harvard Citation styleWinker, P. and Maringer, D. (2007) The Threshold Accepting Optimisation Algorithm in Economics and Statistics, in Kontoghiorghes, E. and Gatu, C. (eds.) Optimisation, Econometric and Financial Analysis. Berlin: Springer, pp. 107-125. https://doi.org/10.1007/3-540-36626-1_6

APA Citation styleWinker, P., & Maringer, D. (2007). The Threshold Accepting Optimisation Algorithm in Economics and Statistics. In Kontoghiorghes, E., & Gatu, C. (Eds.), Optimisation, Econometric and Financial Analysis (pp. 107-125). Springer. https://doi.org/10.1007/3-540-36626-1_6


Last updated on 2025-21-05 at 16:54