Conference paper

Using Threshold Accepting to Improve the Computation of Censored Quantile Regression


Authors listFitzenberger, B.; Winker, P.

Appeared inCOMPSTAT : Proceedings in Computational Statistics, 13th Symposium held in Bristol, Great Britain, 1998

Editor listPayne, R.; Green, P.

Publication year1998

Pages311-316

ISBN978-3-7908-1131-5

eISBN978-3-662-01131-7

DOI Linkhttps://doi.org/10.1007/978-3-662-01131-7_40

Conference13th International Conference on Computational Statistics (COMPSTAT 1998)


Abstract

Due to an interpolation property the computation of censored quantile regression estimates corresponds to the solution of a large scale discrete optimization problem. The global optimization heuristic threshold accepting is used in comparison to other algorithms. It can improve the results considerably though it uses more computing time.




Authors/Editors




Citation Styles

Harvard Citation styleFitzenberger, B. and Winker, P. (1998) Using Threshold Accepting to Improve the Computation of Censored Quantile Regression, in Payne, R. and Green, P. (eds.) COMPSTAT : Proceedings in Computational Statistics, 13th Symposium held in Bristol, Great Britain, 1998 . Heidelberg: Physica. pp. 311-316. https://doi.org/10.1007/978-3-662-01131-7_40

APA Citation styleFitzenberger, B., & Winker, P. (1998). Using Threshold Accepting to Improve the Computation of Censored Quantile Regression. In Payne, R., & Green, P. (Eds.), COMPSTAT : Proceedings in Computational Statistics, 13th Symposium held in Bristol, Great Britain, 1998 . (pp. 311-316). Physica. https://doi.org/10.1007/978-3-662-01131-7_40


Last updated on 2025-21-05 at 16:12