Journal article

Higher level chromatic mechanisms for image segmentation


Authors listHansen, T; Gegenfurtner, KR

Publication year2006

Pages239-259

JournalJournal of Vision

Volume number6

Issue number3

ISSN1534-7362

Open access statusGold

DOI Linkhttps://doi.org/10.1167/6.3.5

PublisherAssociation for Research in Vision and Ophthalmology


Abstract
We used a noise-masking paradigm to investigate the number and properties of chromatic mechanisms involved in image segmentation. Observers were presented with a pattern of dynamic random squares, each independently modulated along a certain direction in DKL color space, either in the isoluminant plane or in the L - M luminance plane. A signal consisting of a rectangular region of squares, oriented horizontally or vertically, was added to the noise. The signal squares were spatially and temporally aligned to the noise squares, excluding the possibility of phase offsets to mediate segmentation performance. Noise and signal color directions were independently varied, and the signal contrast was measured at which an observer could reliably indicate the orientation of the signal. In a second set of experiments, the noise was simultaneously varying in two directions, symmetrically arranged around the signal direction. Masking was generally highest when signal and noise were modulated along the same direction and minimal for orthogonal noise. No difference was found between signals modulated along cardinal directions or intermediate directions. However, measured tuning widths critically depended on the type of noise: Noise modulated along one direction results in narrow tuning, whereas two-sided noise results in broad tuning. A chromatic detection model with multiple broadly tuned mechanisms successfully accounts for the experimental findings, both for narrow and broad tuning curves. Models with four broadly tuned cardinal mechanisms or multiple narrowly tuned mechanisms failed to reproduce the data. Our results suggest an important role for multiple, broadly tuned mechanisms in image segmentation.



Citation Styles

Harvard Citation styleHansen, T. and Gegenfurtner, K. (2006) Higher level chromatic mechanisms for image segmentation, Journal of Vision, 6(3), Article 5. pp. 239-259. https://doi.org/10.1167/6.3.5

APA Citation styleHansen, T., & Gegenfurtner, K. (2006). Higher level chromatic mechanisms for image segmentation. Journal of Vision. 6(3), Article 5, 239-259. https://doi.org/10.1167/6.3.5


Last updated on 2025-10-06 at 09:38