Journal article

Effect-Directed Profiling of Strawberry Varieties and Breeding Materials via Planar Chromatography and Chemometrics





Authors listRistivojevic, Petar; Lekic, Nevena; Cvijetic, Ilija; Krstic, Durda; Andric, Filip; Milojkovic-Opsenica, Dusanka; Morlock, Gertrud E.

Publication year2022

JournalMolecules

Volume number27

Issue number18

eISSN1420-3049

Open access statusGold

DOI Linkhttps://doi.org/10.3390/molecules27186062

PublisherMDPI


Abstract

Strawberries are an important fruit in the European diet because of their unique taste and high content of essential nutrients and bioactive compounds. The anthocyanins are known to be colorful phenolics in strawberries. In 17 samples of six strawberry cultivars produced in Serbia, i.e., the common varieties Alba, Asia, and Clery as well as promising breeding materials (11.29.11, 11.34.6, and 11.39.3), the anthocyanin profile as well as antimicrobial and antioxidative activity profiles were determined. All investigated extracts showed antioxidative and antibacterial activities against Gram-negative Aliivibrio fischeri. The responses were quite similar in number and intensity. The HPTLC-DPPH center dot scavenging assay and HPTLC-Aliivibrio fischeri bioassay coupled with high-resolution mass spectrometry identified pelargonidin-3-O-glucoside (Pg-3-glc) as the main anthocyanin and prominent antioxidative and antimicrobial compound in strawberries. The density functional theory calculations at the M06-2X/6-31+G(d,p) level showed that Pg-3-glc quenches free radicals via sequential proton loss electron transfer mechanism in water and in pentyl ethanoate, where the 5-OH group is the most reactive site for proton and hydrogen atom transfer. The results were confirmed via spectrophotometry. The highest total phenolic content was found in Clery and 11.39.3, while statistically significant differences between the genotypes regarding the antioxidant activity were not confirmed. Although very similar in the anthocyanin, antioxidative, and antimicrobial profile patterns, the strawberry genotypes were successfully classified using principal component analysis.




Citation Styles

Harvard Citation styleRistivojevic, P., Lekic, N., Cvijetic, I., Krstic, D., Andric, F., Milojkovic-Opsenica, D., et al. (2022) Effect-Directed Profiling of Strawberry Varieties and Breeding Materials via Planar Chromatography and Chemometrics, Molecules, 27(18), Article 6062. https://doi.org/10.3390/molecules27186062

APA Citation styleRistivojevic, P., Lekic, N., Cvijetic, I., Krstic, D., Andric, F., Milojkovic-Opsenica, D., & Morlock, G. (2022). Effect-Directed Profiling of Strawberry Varieties and Breeding Materials via Planar Chromatography and Chemometrics. Molecules. 27(18), Article 6062. https://doi.org/10.3390/molecules27186062


Last updated on 2025-10-06 at 11:44