Journal article

Sustained Endurance Training Leads to Metabolomic Adaptation


Authors listWeiss, A; Alack, K; Klatt, S; Zukunft, S; Schermuly, R; Frech, T; Mooren, FC; Krüger, K

Publication year2022

JournalMetabolites

Volume number12

Issue number7

eISSN2218-1989

Open access statusGold

DOI Linkhttps://doi.org/10.3390/metabo12070658

PublisherMDPI


Abstract

Endurance training induces several adaptations in substrate metabolism, especially in relation to glycogen conservation. The study aimed to investigate differences in the metabolism of lipids, lipid-like substances, and amino acids between highly trained and untrained subjects using targeted metabolomics. Depending on their maximum relative oxygen uptake (VO2max), subjects were categorized as either endurance-trained (ET) or untrained (UT). Resting blood was taken and plasma isolated. It was screened for changes of 345 metabolites, including amino acids and biogenic amines, acylcarnitines, glycerophosphocholines (GPCs), sphingolipids, hexoses, bile acids, and polyunsaturated fatty acids (PUFAs) by using liquid chromatography coupled to tandem mass spectrometry. Acylcarnitine (C14:1, down in ET) and five GPCs (lysoPC a C18:2, up in ET; PC aa C42:0, up in ET; PC ae C38:2, up in ET; PC aa C38:5, down in ET; lysoPC a C26:0, down in ET) were differently regulated in ET compared to UT. TCDCA was down-regulated in athletes, while for three ratios of bile acids CA/CDCA, CA/(GCA+TCA), and DCA/(GDCA+TDCA) an up-regulation was found. TXB2 and 5,6-EET were down-regulated in the ET group and 18S-HEPE, a PUFA, showed higher levels in 18S-HEPE in endurance-trained subjects. For PC ae C38:2, TCDCA, and the ratio of cholic acid to chenodeoxycholic acid, an association with VO2max was found. Numerous phospholipids, acylcarnitines, glycerophosphocholines, bile acids, and PUFAs are present in varying concentrations at rest in ET. These results might represent an adaptation of lipid metabolism and account for the lowered cardiovascular risk profile of endurance athletes.




Citation Styles

Harvard Citation styleWeiss, A., Alack, K., Klatt, S., Zukunft, S., Schermuly, R., Frech, T., et al. (2022) Sustained Endurance Training Leads to Metabolomic Adaptation, Metabolites, 12(7), Article 658. https://doi.org/10.3390/metabo12070658

APA Citation styleWeiss, A., Alack, K., Klatt, S., Zukunft, S., Schermuly, R., Frech, T., Mooren, F., & Krüger, K. (2022). Sustained Endurance Training Leads to Metabolomic Adaptation. Metabolites. 12(7), Article 658. https://doi.org/10.3390/metabo12070658


Last updated on 2025-10-06 at 11:42