Journal article

Strictly positive definite kernels on the 2-sphere: from radial symmetry to eigenvalue block structure


Authors listBuhmann, Martin; Jaeger, Janin

Publication year2022

Pages1500-1525

JournalIMA Journal of Numerical Analysis

Volume number42

Issue number2

ISSN0272-4979

eISSN1464-3642

Open access statusGreen

DOI Linkhttps://doi.org/10.1093/imanum/drab012

PublisherOxford University Press


Abstract
The paper introduces a new characterization of strict positive definiteness for kernels on the 2-sphere without assuming the kernel to be radially (isotropic) or axially symmetric. The results use the series expansion of the kernel in spherical harmonics. Then additional sufficient conditions are proven for kernels with a block structure of expansion coefficients. These generalize the result derived by Chen et al. (2003, A necessary and sufficient condition for strictly positive definite functions on spheres. Proc. Amer. Math. Soc., 131, 2733-2740) for radial kernels to nonradial kernels.



Citation Styles

Harvard Citation styleBuhmann, M. and Jaeger, J. (2022) Strictly positive definite kernels on the 2-sphere: from radial symmetry to eigenvalue block structure, IMA Journal of Numerical Analysis, 42(2), pp. 1500-1525. https://doi.org/10.1093/imanum/drab012

APA Citation styleBuhmann, M., & Jaeger, J. (2022). Strictly positive definite kernels on the 2-sphere: from radial symmetry to eigenvalue block structure. IMA Journal of Numerical Analysis. 42(2), 1500-1525. https://doi.org/10.1093/imanum/drab012



Keywords


2-sphereCovariance functionsSPACESStrictly positive definite kernels


SDG Areas


Last updated on 2025-10-06 at 11:36