Journal article
Authors list: Buhmann, Martin; Jaeger, Janin
Publication year: 2022
Pages: 1500-1525
Journal: IMA Journal of Numerical Analysis
Volume number: 42
Issue number: 2
ISSN: 0272-4979
eISSN: 1464-3642
Open access status: Green
DOI Link: https://doi.org/10.1093/imanum/drab012
Publisher: Oxford University Press
Abstract:
The paper introduces a new characterization of strict positive definiteness for kernels on the 2-sphere without assuming the kernel to be radially (isotropic) or axially symmetric. The results use the series expansion of the kernel in spherical harmonics. Then additional sufficient conditions are proven for kernels with a block structure of expansion coefficients. These generalize the result derived by Chen et al. (2003, A necessary and sufficient condition for strictly positive definite functions on spheres. Proc. Amer. Math. Soc., 131, 2733-2740) for radial kernels to nonradial kernels.
Citation Styles
Harvard Citation style: Buhmann, M. and Jaeger, J. (2022) Strictly positive definite kernels on the 2-sphere: from radial symmetry to eigenvalue block structure, IMA Journal of Numerical Analysis, 42(2), pp. 1500-1525. https://doi.org/10.1093/imanum/drab012
APA Citation style: Buhmann, M., & Jaeger, J. (2022). Strictly positive definite kernels on the 2-sphere: from radial symmetry to eigenvalue block structure. IMA Journal of Numerical Analysis. 42(2), 1500-1525. https://doi.org/10.1093/imanum/drab012
Keywords
2-sphere; Covariance functions; SPACES; Strictly positive definite kernels