Journalartikel
Autorenliste: Tripolt, Ralf-Arno; Gubler, Philipp; Ulybyshev, Maksim; von Smekal, Lorenz
Jahr der Veröffentlichung: 2019
Seiten: 129-142
Zeitschrift: Computer Physics Communications
Bandnummer: 237
ISSN: 0010-4655
eISSN: 1879-2944
DOI Link: https://doi.org/10.1016/j.cpc.2018.11.012
Verlag: Elsevier
Abstract:
In this work we present a direct comparison of three different numerical analytic continuation methods: the Maximum Entropy Method, the Backus-Gilbert method and the Schlessinger point or Resonances Via Rade method. First, we perform a benchmark test based on a model spectral function and study the regime of applicability of these methods depending on the number of input points and their statistical error. We then apply these methods to more realistic examples, namely to numerical data on Euclidean propagators obtained from a Functional Renormalization Group calculation, to data from a lattice Quantum Chromodynamics simulation and to data obtained from a tight-binding model for graphene in order to extract the electrical conductivity. (C) 2018 Elsevier B.V. All rights reserved.
Zitierstile
Harvard-Zitierstil: Tripolt, R., Gubler, P., Ulybyshev, M. and von Smekal, L. (2019) Numerical analytic continuation of Euclidean data, Computer Physics Communications, 237, pp. 129-142. https://doi.org/10.1016/j.cpc.2018.11.012
APA-Zitierstil: Tripolt, R., Gubler, P., Ulybyshev, M., & von Smekal, L. (2019). Numerical analytic continuation of Euclidean data. Computer Physics Communications. 237, 129-142. https://doi.org/10.1016/j.cpc.2018.11.012
Schlagwörter
ANALYTIC CONTINUATION; FIELD-THEORY; INFORMATION-THEORY; LATTICE QCD; MAXIMUM-ENTROPY ANALYSIS; QCD; Spectral function; SPECTRAL FUNCTIONS