Journal article
Authors list: De Malafosse, Bruno; Malkowsky, Eberhard
Publication year: 2014
Pages: 197-217
Journal: Publicationes Mathematicae Debrecen
Volume number: 85
Issue number: 1-2
ISSN: 0033-3883
Open access status: Bronze
DOI Link: https://doi.org/10.5486/PMD.2014.5915
Publisher: Debreceni Egyetem, Matematika Intézet
Abstract:
We apply the characterisation of the class (omega(infinity)(Lambda), omega(infinity)(Sigma)) and the fact that this is a Banach algebra to study the solvability in omega(infinity)(Lambda) of matrix equations of the form Delta X-+(rho) = B and Delta X-rho = B, where Delta(+)(rho) and Delta(p) are upper and lower triangular matrices. Finally, we obtain some results on infinite tridiagonal matrices considered as operators from omega(infinity)(Lambda) into itself, and study the solvability in omega(infinity)(Lambda) of matrix equations for tridiagonal matrices.
Citation Styles
Harvard Citation style: De Malafosse, B. and Malkowsky, E. (2014) On the Banach algebra (ω∞(Λ), ω∞(Λ)) and applications to the solvability of matrix equations in ω∞(Λ), Publicationes Mathematicae Debrecen, 85(1-2), pp. 197-217. https://doi.org/10.5486/PMD.2014.5915
APA Citation style: De Malafosse, B., & Malkowsky, E. (2014). On the Banach algebra (ω∞(Λ), ω∞(Λ)) and applications to the solvability of matrix equations in ω∞(Λ). Publicationes Mathematicae Debrecen. 85(1-2), 197-217. https://doi.org/10.5486/PMD.2014.5915
Keywords
BK spaces; infinite linear systems; matrix transformations; spaces of strongly bounded sequences; summability
SDG Areas