Journal article

On the Banach algebra (ω(Λ), ω(Λ)) and applications to the solvability of matrix equations in ω(Λ)


Authors listDe Malafosse, Bruno; Malkowsky, Eberhard

Publication year2014

Pages197-217

JournalPublicationes Mathematicae Debrecen

Volume number85

Issue number1-2

ISSN0033-3883

Open access statusBronze

DOI Linkhttps://doi.org/10.5486/PMD.2014.5915

PublisherDebreceni Egyetem, Matematika Intézet


Abstract
We apply the characterisation of the class (omega(infinity)(Lambda), omega(infinity)(Sigma)) and the fact that this is a Banach algebra to study the solvability in omega(infinity)(Lambda) of matrix equations of the form Delta X-+(rho) = B and Delta X-rho = B, where Delta(+)(rho) and Delta(p) are upper and lower triangular matrices. Finally, we obtain some results on infinite tridiagonal matrices considered as operators from omega(infinity)(Lambda) into itself, and study the solvability in omega(infinity)(Lambda) of matrix equations for tridiagonal matrices.



Citation Styles

Harvard Citation styleDe Malafosse, B. and Malkowsky, E. (2014) On the Banach algebra (ω(Λ), ω(Λ)) and applications to the solvability of matrix equations in ω(Λ), Publicationes Mathematicae Debrecen, 85(1-2), pp. 197-217. https://doi.org/10.5486/PMD.2014.5915

APA Citation styleDe Malafosse, B., & Malkowsky, E. (2014). On the Banach algebra (ω(Λ), ω(Λ)) and applications to the solvability of matrix equations in ω(Λ). Publicationes Mathematicae Debrecen. 85(1-2), 197-217. https://doi.org/10.5486/PMD.2014.5915



Keywords


BK spacesinfinite linear systemsmatrix transformationsspaces of strongly bounded sequencessummability

Last updated on 2025-10-06 at 10:22