Journalartikel

Full rank interpolatory subdivision: A first encounter with the multivariate realm


AutorenlisteConti, Costanza; Cotronei, Mariantonia; Sauer, Tomas

Jahr der Veröffentlichung2010

Seiten559-575

ZeitschriftJournal of Approximation Theory

Bandnummer162

Heftnummer3

ISSN0021-9045

eISSN1096-0430

DOI Linkhttps://doi.org/10.1016/j.jat.2009.08.008

VerlagElsevier


Abstract
We extend our previous work on interpolatory vector subdivision schemes to the multivariate case. As in the univariate case we show that the diagonal and off-diagonal elements of such a scheme have a significantly different structure and that under certain circumstances symmetry of the mask can increase the polynomial reproduction power of the subdivision scheme. Moreover, we briefly point out how tensor product constructions for vector subdivision schemes can be obtained. (C) 2009 Elsevier Inc. All rights reserved.



Zitierstile

Harvard-ZitierstilConti, C., Cotronei, M. and Sauer, T. (2010) Full rank interpolatory subdivision: A first encounter with the multivariate realm, Journal of Approximation Theory, 162(3), pp. 559-575. https://doi.org/10.1016/j.jat.2009.08.008

APA-ZitierstilConti, C., Cotronei, M., & Sauer, T. (2010). Full rank interpolatory subdivision: A first encounter with the multivariate realm. Journal of Approximation Theory. 162(3), 559-575. https://doi.org/10.1016/j.jat.2009.08.008



Schlagwörter


Full rankMatrix tensor product schemeMultivariate interpolatory schemeMultivariate vector subdivisionREGULARITY

Zuletzt aktualisiert 2025-02-04 um 03:06