Journal article
Authors list: Conti, Costanza; Cotronei, Mariantonia; Sauer, Tomas
Publication year: 2010
Pages: 559-575
Journal: Journal of Approximation Theory
Volume number: 162
Issue number: 3
ISSN: 0021-9045
eISSN: 1096-0430
DOI Link: https://doi.org/10.1016/j.jat.2009.08.008
Publisher: Elsevier
Abstract:
We extend our previous work on interpolatory vector subdivision schemes to the multivariate case. As in the univariate case we show that the diagonal and off-diagonal elements of such a scheme have a significantly different structure and that under certain circumstances symmetry of the mask can increase the polynomial reproduction power of the subdivision scheme. Moreover, we briefly point out how tensor product constructions for vector subdivision schemes can be obtained. (C) 2009 Elsevier Inc. All rights reserved.
Citation Styles
Harvard Citation style: Conti, C., Cotronei, M. and Sauer, T. (2010) Full rank interpolatory subdivision: A first encounter with the multivariate realm, Journal of Approximation Theory, 162(3), pp. 559-575. https://doi.org/10.1016/j.jat.2009.08.008
APA Citation style: Conti, C., Cotronei, M., & Sauer, T. (2010). Full rank interpolatory subdivision: A first encounter with the multivariate realm. Journal of Approximation Theory. 162(3), 559-575. https://doi.org/10.1016/j.jat.2009.08.008
Keywords
Full rank; Matrix tensor product scheme; Multivariate interpolatory scheme; Multivariate vector subdivision; REGULARITY