Journalartikel

ON THE MEASURE OF NONCOMPACTNESS OF LINEAR OPERATORS IN SPACES OF STRONGLY α-SUMMABLE AND BOUNDED SEQUENCES


AutorenlisteDe Malafosse, Bruno; Malkowsky, Eberhard

Jahr der Veröffentlichung2007

Seiten129-148

ZeitschriftPeriodica Mathematica Hungarica

Bandnummer55

Heftnummer2

ISSN0031-5303

eISSN1588-2829

DOI Linkhttps://doi.org/10.1007/s10998-007-4129-4

VerlagSpringer Verlag (Germany) / Akadémiai Kiadó


Abstract
In this paper, we characterize classes of matrix transformations from BK spaces into spaces of bounded sequences and their subclasses of infinite matrices that de. ne compact operators. Furthermore, using these results and the solvability of certain infinite linear systems we give necessary and sufficient conditions for A to be a compact operator on spaces that are strongly alpha-bounded or summable.



Zitierstile

Harvard-ZitierstilDe Malafosse, B. and Malkowsky, E. (2007) ON THE MEASURE OF NONCOMPACTNESS OF LINEAR OPERATORS IN SPACES OF STRONGLY α-SUMMABLE AND BOUNDED SEQUENCES, Periodica Mathematica Hungarica, 55(2), pp. 129-148. https://doi.org/10.1007/s10998-007-4129-4

APA-ZitierstilDe Malafosse, B., & Malkowsky, E. (2007). ON THE MEASURE OF NONCOMPACTNESS OF LINEAR OPERATORS IN SPACES OF STRONGLY α-SUMMABLE AND BOUNDED SEQUENCES. Periodica Mathematica Hungarica. 55(2), 129-148. https://doi.org/10.1007/s10998-007-4129-4



Schlagwörter


Banach algebras with identitydual spaceinfinite linear systemsmatrix domainssequence spaces

Zuletzt aktualisiert 2025-02-04 um 03:41