Journal article

ON THE MEASURE OF NONCOMPACTNESS OF LINEAR OPERATORS IN SPACES OF STRONGLY α-SUMMABLE AND BOUNDED SEQUENCES


Authors listDe Malafosse, Bruno; Malkowsky, Eberhard

Publication year2007

Pages129-148

JournalPeriodica Mathematica Hungarica

Volume number55

Issue number2

ISSN0031-5303

eISSN1588-2829

DOI Linkhttps://doi.org/10.1007/s10998-007-4129-4

PublisherSpringer Verlag (Germany) / Akadémiai Kiadó


Abstract
In this paper, we characterize classes of matrix transformations from BK spaces into spaces of bounded sequences and their subclasses of infinite matrices that de. ne compact operators. Furthermore, using these results and the solvability of certain infinite linear systems we give necessary and sufficient conditions for A to be a compact operator on spaces that are strongly alpha-bounded or summable.



Citation Styles

Harvard Citation styleDe Malafosse, B. and Malkowsky, E. (2007) ON THE MEASURE OF NONCOMPACTNESS OF LINEAR OPERATORS IN SPACES OF STRONGLY α-SUMMABLE AND BOUNDED SEQUENCES, Periodica Mathematica Hungarica, 55(2), pp. 129-148. https://doi.org/10.1007/s10998-007-4129-4

APA Citation styleDe Malafosse, B., & Malkowsky, E. (2007). ON THE MEASURE OF NONCOMPACTNESS OF LINEAR OPERATORS IN SPACES OF STRONGLY α-SUMMABLE AND BOUNDED SEQUENCES. Periodica Mathematica Hungarica. 55(2), 129-148. https://doi.org/10.1007/s10998-007-4129-4



Keywords


Banach algebras with identitydual spaceinfinite linear systemsmatrix domainssequence spaces

Last updated on 2025-02-04 at 03:41