Journal article
Authors list: De Malafosse, Bruno; Malkowsky, Eberhard
Publication year: 2007
Pages: 129-148
Journal: Periodica Mathematica Hungarica
Volume number: 55
Issue number: 2
ISSN: 0031-5303
eISSN: 1588-2829
DOI Link: https://doi.org/10.1007/s10998-007-4129-4
Publisher: Springer Verlag (Germany) / Akadémiai Kiadó
Abstract:
In this paper, we characterize classes of matrix transformations from BK spaces into spaces of bounded sequences and their subclasses of infinite matrices that de. ne compact operators. Furthermore, using these results and the solvability of certain infinite linear systems we give necessary and sufficient conditions for A to be a compact operator on spaces that are strongly alpha-bounded or summable.
Citation Styles
Harvard Citation style: De Malafosse, B. and Malkowsky, E. (2007) ON THE MEASURE OF NONCOMPACTNESS OF LINEAR OPERATORS IN SPACES OF STRONGLY α-SUMMABLE AND BOUNDED SEQUENCES, Periodica Mathematica Hungarica, 55(2), pp. 129-148. https://doi.org/10.1007/s10998-007-4129-4
APA Citation style: De Malafosse, B., & Malkowsky, E. (2007). ON THE MEASURE OF NONCOMPACTNESS OF LINEAR OPERATORS IN SPACES OF STRONGLY α-SUMMABLE AND BOUNDED SEQUENCES. Periodica Mathematica Hungarica. 55(2), 129-148. https://doi.org/10.1007/s10998-007-4129-4
Keywords
Banach algebras with identity; dual space; infinite linear systems; matrix domains; sequence spaces
SDG Areas