Journalartikel
Autorenliste: Casazza, Peter G.; Kutyniok, Gitta
Jahr der Veröffentlichung: 2007
Seiten: 65-78
Zeitschrift: Advances in Computational Mathematics
Bandnummer: 27
Heftnummer: 1
ISSN: 1019-7168
eISSN: 1572-9044
DOI Link: https://doi.org/10.1007/s10444-005-7478-1
Verlag: Springer
Abstract:
Given an arbitrary finite sequence of vectors in a finite-dimensional Hilbert space, we describe an algorithm, which computes a Parseval frame for the subspace generated by the input vectors while preserving redundancy exactly. We further investigate several of its properties. Finally, we apply the algorithm to several numerical examples.
Zitierstile
Harvard-Zitierstil: Casazza, P. and Kutyniok, G. (2007) A generalization of Gram-Schmidt orthogonalization generating all Parseval frames, Advances in Computational Mathematics, 27(1), pp. 65-78. https://doi.org/10.1007/s10444-005-7478-1
APA-Zitierstil: Casazza, P., & Kutyniok, G. (2007). A generalization of Gram-Schmidt orthogonalization generating all Parseval frames. Advances in Computational Mathematics. 27(1), 65-78. https://doi.org/10.1007/s10444-005-7478-1
Schlagwörter
ERASURES; finite-dimensional Hilbert space; Gram-Schmidt orthogonalization; linear dependence; Parseval frame; REDUNDANCY; TIGHT FRAMES