Journalartikel

A generalization of Gram-Schmidt orthogonalization generating all Parseval frames


AutorenlisteCasazza, Peter G.; Kutyniok, Gitta

Jahr der Veröffentlichung2007

Seiten65-78

ZeitschriftAdvances in Computational Mathematics

Bandnummer27

Heftnummer1

ISSN1019-7168

eISSN1572-9044

DOI Linkhttps://doi.org/10.1007/s10444-005-7478-1

VerlagSpringer


Abstract
Given an arbitrary finite sequence of vectors in a finite-dimensional Hilbert space, we describe an algorithm, which computes a Parseval frame for the subspace generated by the input vectors while preserving redundancy exactly. We further investigate several of its properties. Finally, we apply the algorithm to several numerical examples.



Zitierstile

Harvard-ZitierstilCasazza, P. and Kutyniok, G. (2007) A generalization of Gram-Schmidt orthogonalization generating all Parseval frames, Advances in Computational Mathematics, 27(1), pp. 65-78. https://doi.org/10.1007/s10444-005-7478-1

APA-ZitierstilCasazza, P., & Kutyniok, G. (2007). A generalization of Gram-Schmidt orthogonalization generating all Parseval frames. Advances in Computational Mathematics. 27(1), 65-78. https://doi.org/10.1007/s10444-005-7478-1



Schlagwörter


ERASURESfinite-dimensional Hilbert spaceGram-Schmidt orthogonalizationlinear dependenceParseval frameREDUNDANCYTIGHT FRAMES

Zuletzt aktualisiert 2025-02-04 um 03:44