Journal article

The geometry of sets of parameters of wave packet frames


Authors listCzaja, W; Kutyniok, G; Speegle, D

Publication year2006

Pages108-125

JournalApplied and Computational Harmonic Analysis

Volume number20

Issue number1

ISSN1063-5203

Open access statusBronze

DOI Linkhttps://doi.org/10.1016/j.acha.2005.04.002

PublisherElsevier


Abstract
We study wave packet systems WP(psi, M); that is, countable collections of dilations, translations, and modulations of a single function psi is an element of L-2(R). The parameters of these unitary actions form a discrete subset M subset of R+ x R x R. We introduce analogues of the notion of Beurling density, adapted to the geometry of discrete subsets of R+ x R x R, and notions of lower and upper dimensions associated with these densities. Our goal is to describe completeness properties of wave packet systems via geometric properties of the sets of their parameters. In particular, we show necessary conditions for WP (psi, M) to be a Bessel system, and we construct multiple examples of non-standard wave packet frames with prescribed dimensions. (C) 2005 Elsevier Inc. All rights reserved.



Citation Styles

Harvard Citation styleCzaja, W., Kutyniok, G. and Speegle, D. (2006) The geometry of sets of parameters of wave packet frames, Applied and Computational Harmonic Analysis, 20(1), pp. 108-125. https://doi.org/10.1016/j.acha.2005.04.002

APA Citation styleCzaja, W., Kutyniok, G., & Speegle, D. (2006). The geometry of sets of parameters of wave packet frames. Applied and Computational Harmonic Analysis. 20(1), 108-125. https://doi.org/10.1016/j.acha.2005.04.002



Keywords


Beurling densitydimensionFRAMEGabor systemOPERATORSPACESwaveletwave packet system

Last updated on 2025-10-06 at 09:37