Journalartikel

The geometry of sets of parameters of wave packet frames


AutorenlisteCzaja, W; Kutyniok, G; Speegle, D

Jahr der Veröffentlichung2006

Seiten108-125

ZeitschriftApplied and Computational Harmonic Analysis

Bandnummer20

Heftnummer1

ISSN1063-5203

Open Access StatusBronze

DOI Linkhttps://doi.org/10.1016/j.acha.2005.04.002

VerlagElsevier


Abstract
We study wave packet systems WP(psi, M); that is, countable collections of dilations, translations, and modulations of a single function psi is an element of L-2(R). The parameters of these unitary actions form a discrete subset M subset of R+ x R x R. We introduce analogues of the notion of Beurling density, adapted to the geometry of discrete subsets of R+ x R x R, and notions of lower and upper dimensions associated with these densities. Our goal is to describe completeness properties of wave packet systems via geometric properties of the sets of their parameters. In particular, we show necessary conditions for WP (psi, M) to be a Bessel system, and we construct multiple examples of non-standard wave packet frames with prescribed dimensions. (C) 2005 Elsevier Inc. All rights reserved.



Zitierstile

Harvard-ZitierstilCzaja, W., Kutyniok, G. and Speegle, D. (2006) The geometry of sets of parameters of wave packet frames, Applied and Computational Harmonic Analysis, 20(1), pp. 108-125. https://doi.org/10.1016/j.acha.2005.04.002

APA-ZitierstilCzaja, W., Kutyniok, G., & Speegle, D. (2006). The geometry of sets of parameters of wave packet frames. Applied and Computational Harmonic Analysis. 20(1), 108-125. https://doi.org/10.1016/j.acha.2005.04.002



Schlagwörter


Beurling densitydimensionFRAMEGabor systemOPERATORSPACESwaveletwave packet system

Zuletzt aktualisiert 2025-10-06 um 09:37