Journalartikel

Wavelets for multichannel signals


AutorenlisteBacchelli, S; Cotronei, M; Sauer, T

Jahr der Veröffentlichung2002

Seiten581-598

ZeitschriftAdvances in Applied Mathematics

Bandnummer29

Heftnummer4

ISSN0196-8858

DOI Linkhttps://doi.org/10.1016/S0196-8858(02)00033-7

VerlagElsevier


Abstract
In this paper, we introduce and investigate multichannel wavelets, which are wavelets for vector fields, based on the concept of full rank subdivision operators. We prove that, like in the scalar and multiwavelet case, the existence of a scaling function with orthogonal integer translates guarantees the existence of a wavelet function, also with orthonormal integer translates. In this context, however, scaling functions as well as wavelets turn out to be matrix-valued functions. (C) 2002 Elsevier Science (USA). All rights reserved.



Zitierstile

Harvard-ZitierstilBacchelli, S., Cotronei, M. and Sauer, T. (2002) Wavelets for multichannel signals, Advances in Applied Mathematics, 29(4), Article PII S0196-8858(02)00033-7. pp. 581-598. https://doi.org/10.1016/S0196-8858(02)00033-7

APA-ZitierstilBacchelli, S., Cotronei, M., & Sauer, T. (2002). Wavelets for multichannel signals. Advances in Applied Mathematics. 29(4), Article PII S0196-8858(02)00033-7, 581-598. https://doi.org/10.1016/S0196-8858(02)00033-7



Schlagwörter


full rank subdivisionmatrix waveletsmultichannel waveletsmultiwaveletsstationary subdivision

Zuletzt aktualisiert 2025-02-04 um 06:34