Journalartikel
Autorenliste: Davydov, O; Schumaker, LL
Jahr der Veröffentlichung: 2002
Seiten: 1732-1748
Zeitschrift: SIAM Journal on Numerical Analysis
Bandnummer: 39
Heftnummer: 5
ISSN: 0036-1429
eISSN: 1095-7170
DOI Link: https://doi.org/10.1137/S0036142901384472
Verlag: Society for Industrial and Applied Mathematics
Abstract:
We show how two recent algorithms for computing C-1 quartic interpolating splines can be stabilized to ensure that, for smooth functions, they provide full approximation power with approximation constants depending only on the smallest angle in the triangulation [C. K. Chui and D. Hong, Math. Comp., 65 (1996), pp. 85-98; C. K. Chui and D. Hong, SIAM J. Numer. Anal., 34 (1997), pp. 1472-1482; D. Hong, Approximation Theory VIII, Vol. 1: Approximation and Interpolation, C. K. Chui and L. L. Schumaker, eds., World Scientific, Singapore, 1995, pp. 249-256].
Zitierstile
Harvard-Zitierstil: Davydov, O. and Schumaker, L. (2002) Stable approximation and interpolation with C1 quartic bivariate splines, SIAM Journal on Numerical Analysis, 39(5), pp. 1732-1748. https://doi.org/10.1137/S0036142901384472
APA-Zitierstil: Davydov, O., & Schumaker, L. (2002). Stable approximation and interpolation with C1 quartic bivariate splines. SIAM Journal on Numerical Analysis. 39(5), 1732-1748. https://doi.org/10.1137/S0036142901384472
Schlagwörter
bivariate splines; OPTIMAL-ORDER; SCATTERED DATA INTERPOLATION; stable approximation