Journal article

Stable approximation and interpolation with C1 quartic bivariate splines


Authors listDavydov, O; Schumaker, LL

Publication year2002

Pages1732-1748

JournalSIAM Journal on Numerical Analysis

Volume number39

Issue number5

ISSN0036-1429

eISSN1095-7170

DOI Linkhttps://doi.org/10.1137/S0036142901384472

PublisherSociety for Industrial and Applied Mathematics


Abstract
We show how two recent algorithms for computing C-1 quartic interpolating splines can be stabilized to ensure that, for smooth functions, they provide full approximation power with approximation constants depending only on the smallest angle in the triangulation [C. K. Chui and D. Hong, Math. Comp., 65 (1996), pp. 85-98; C. K. Chui and D. Hong, SIAM J. Numer. Anal., 34 (1997), pp. 1472-1482; D. Hong, Approximation Theory VIII, Vol. 1: Approximation and Interpolation, C. K. Chui and L. L. Schumaker, eds., World Scientific, Singapore, 1995, pp. 249-256].



Citation Styles

Harvard Citation styleDavydov, O. and Schumaker, L. (2002) Stable approximation and interpolation with C1 quartic bivariate splines, SIAM Journal on Numerical Analysis, 39(5), pp. 1732-1748. https://doi.org/10.1137/S0036142901384472

APA Citation styleDavydov, O., & Schumaker, L. (2002). Stable approximation and interpolation with C1 quartic bivariate splines. SIAM Journal on Numerical Analysis. 39(5), 1732-1748. https://doi.org/10.1137/S0036142901384472



Keywords


bivariate splinesOPTIMAL-ORDERSCATTERED DATA INTERPOLATIONstable approximation

Last updated on 2025-02-04 at 07:35