Journalartikel
Autorenliste: Davydov, O
Jahr der Veröffentlichung: 2001
Seiten: 267-297
Zeitschrift: Journal of Approximation Theory
Bandnummer: 111
Heftnummer: 2
ISSN: 0021-9045
Open Access Status: Green
DOI Link: https://doi.org/10.1006/jath.2001.3577
Verlag: Elsevier
Abstract:
We present an algorithm for constructing stable local bases for the spaces J(d)(r)(Delta) of multivariate polynomial splines of smoothness r greater than or equal to 1 and degree d greater than or equal to r2(n) +1 on an arbitrary triangulation Delta of a bounded polyhedral domain Omega subset of R-n, n greater than or equal to 2. (C) 2001 Academic Press.
Zitierstile
Harvard-Zitierstil: Davydov, O. (2001) Stable local bases for multivariate spline spaces, Journal of Approximation Theory, 111(2), pp. 267-297. https://doi.org/10.1006/jath.2001.3577
APA-Zitierstil: Davydov, O. (2001). Stable local bases for multivariate spline spaces. Journal of Approximation Theory. 111(2), 267-297. https://doi.org/10.1006/jath.2001.3577
Schlagwörter
BIVARIATE SPLINES; FINITE-ELEMENTS; VERTEX SPLINES