Journalartikel

Stable local bases for multivariate spline spaces


AutorenlisteDavydov, O

Jahr der Veröffentlichung2001

Seiten267-297

ZeitschriftJournal of Approximation Theory

Bandnummer111

Heftnummer2

ISSN0021-9045

Open Access StatusGreen

DOI Linkhttps://doi.org/10.1006/jath.2001.3577

VerlagElsevier


Abstract
We present an algorithm for constructing stable local bases for the spaces J(d)(r)(Delta) of multivariate polynomial splines of smoothness r greater than or equal to 1 and degree d greater than or equal to r2(n) +1 on an arbitrary triangulation Delta of a bounded polyhedral domain Omega subset of R-n, n greater than or equal to 2. (C) 2001 Academic Press.



Zitierstile

Harvard-ZitierstilDavydov, O. (2001) Stable local bases for multivariate spline spaces, Journal of Approximation Theory, 111(2), pp. 267-297. https://doi.org/10.1006/jath.2001.3577

APA-ZitierstilDavydov, O. (2001). Stable local bases for multivariate spline spaces. Journal of Approximation Theory. 111(2), 267-297. https://doi.org/10.1006/jath.2001.3577



Schlagwörter


BIVARIATE SPLINESFINITE-ELEMENTSVERTEX SPLINES

Zuletzt aktualisiert 2025-10-06 um 09:25