Journalartikel
Autorenliste: Davydov, O; Nürnberger, G
Jahr der Veröffentlichung: 2000
Seiten: 159-183
Zeitschrift: Journal of Computational and Applied Mathematics
Bandnummer: 126
Heftnummer: 1-2
ISSN: 0377-0427
eISSN: 1879-1778
Open Access Status: Green
DOI Link: https://doi.org/10.1016/S0377-0427(99)00350-7
Verlag: Elsevier
Abstract:
Let Delta be an arbitrary regular triangulation of a simply connected compact polygonal domain Omega subset of R-2 and let S-q(l)(Delta) denote the space of bivariate polynomial splines of degree a and smoothness 1 with respect to d. We develop an algorithm for constructing point sets admissible for Lagrange interpolation by S-q(l)(Delta) if q greater than or equal to4. In the case q = 4 it may be necessary to slightly modify Delta, but only if exceptional constellations of triangles occur. Hermite interpolation schemes are obtained as limits of the Lagrange interpolation sets. (C) 2000 Elsevier Science B.V. All rights reserved. MSG: 41A15; 41A63.
Zitierstile
Harvard-Zitierstil: Davydov, O. and Nürnberger, G. (2000) Interpolation by Cl splines of degree q≥4 on triangulations, Journal of Computational and Applied Mathematics, 126(1-2), pp. 159-183. https://doi.org/10.1016/S0377-0427(99)00350-7
APA-Zitierstil: Davydov, O., & Nürnberger, G. (2000). Interpolation by Cl splines of degree q≥4 on triangulations. Journal of Computational and Applied Mathematics. 126(1-2), 159-183. https://doi.org/10.1016/S0377-0427(99)00350-7
Schlagwörter
APPROXIMATION ORDER; bivariate splines; BIVARIATE SPLINES