Journalartikel

Interpolation by Cl splines of degree q≥4 on triangulations


AutorenlisteDavydov, O; Nürnberger, G

Jahr der Veröffentlichung2000

Seiten159-183

ZeitschriftJournal of Computational and Applied Mathematics

Bandnummer126

Heftnummer1-2

ISSN0377-0427

eISSN1879-1778

Open Access StatusGreen

DOI Linkhttps://doi.org/10.1016/S0377-0427(99)00350-7

VerlagElsevier


Abstract
Let Delta be an arbitrary regular triangulation of a simply connected compact polygonal domain Omega subset of R-2 and let S-q(l)(Delta) denote the space of bivariate polynomial splines of degree a and smoothness 1 with respect to d. We develop an algorithm for constructing point sets admissible for Lagrange interpolation by S-q(l)(Delta) if q greater than or equal to4. In the case q = 4 it may be necessary to slightly modify Delta, but only if exceptional constellations of triangles occur. Hermite interpolation schemes are obtained as limits of the Lagrange interpolation sets. (C) 2000 Elsevier Science B.V. All rights reserved. MSG: 41A15; 41A63.



Zitierstile

Harvard-ZitierstilDavydov, O. and Nürnberger, G. (2000) Interpolation by Cl splines of degree q≥4 on triangulations, Journal of Computational and Applied Mathematics, 126(1-2), pp. 159-183. https://doi.org/10.1016/S0377-0427(99)00350-7

APA-ZitierstilDavydov, O., & Nürnberger, G. (2000). Interpolation by Cl splines of degree q≥4 on triangulations. Journal of Computational and Applied Mathematics. 126(1-2), 159-183. https://doi.org/10.1016/S0377-0427(99)00350-7



Schlagwörter


APPROXIMATION ORDERbivariate splinesBIVARIATE SPLINES

Zuletzt aktualisiert 2025-10-06 um 09:24