Journal article
Authors list: Davydov, O; Schumaker, LL
Publication year: 2000
Pages: 355-373
Journal: Advances in Computational Mathematics
Volume number: 13
Issue number: 4
ISSN: 1019-7168
eISSN: 1572-9044
DOI Link: https://doi.org/10.1023/A:1016626526861
Publisher: Springer
Abstract:
Locally linearly independent bases are constructed for the spaces S-d(r)(Delta) of polynomial splines of degree d greater than or equal to 3r + 2 and smoothness r defined on triangulations, as well as for their superspline subspaces.
Citation Styles
Harvard Citation style: Davydov, O. and Schumaker, L. (2000) Locally linearly independent bases for bivariate polynomial spline spaces, Advances in Computational Mathematics, 13(4), pp. 355-373. https://doi.org/10.1023/A:1016626526861
APA Citation style: Davydov, O., & Schumaker, L. (2000). Locally linearly independent bases for bivariate polynomial spline spaces. Advances in Computational Mathematics. 13(4), 355-373. https://doi.org/10.1023/A:1016626526861
Keywords
dimension