Journalartikel

Locally linearly independent bases for bivariate polynomial spline spaces


AutorenlisteDavydov, O; Schumaker, LL

Jahr der Veröffentlichung2000

Seiten355-373

ZeitschriftAdvances in Computational Mathematics

Bandnummer13

Heftnummer4

ISSN1019-7168

eISSN1572-9044

DOI Linkhttps://doi.org/10.1023/A:1016626526861

VerlagSpringer


Abstract
Locally linearly independent bases are constructed for the spaces S-d(r)(Delta) of polynomial splines of degree d greater than or equal to 3r + 2 and smoothness r defined on triangulations, as well as for their superspline subspaces.



Zitierstile

Harvard-ZitierstilDavydov, O. and Schumaker, L. (2000) Locally linearly independent bases for bivariate polynomial spline spaces, Advances in Computational Mathematics, 13(4), pp. 355-373. https://doi.org/10.1023/A:1016626526861

APA-ZitierstilDavydov, O., & Schumaker, L. (2000). Locally linearly independent bases for bivariate polynomial spline spaces. Advances in Computational Mathematics. 13(4), 355-373. https://doi.org/10.1023/A:1016626526861



Schlagwörter


dimension

Zuletzt aktualisiert 2025-02-04 um 06:50