Journalartikel
Autorenliste: Davydov, O; Schumaker, LL
Jahr der Veröffentlichung: 2000
Seiten: 355-373
Zeitschrift: Advances in Computational Mathematics
Bandnummer: 13
Heftnummer: 4
ISSN: 1019-7168
eISSN: 1572-9044
DOI Link: https://doi.org/10.1023/A:1016626526861
Verlag: Springer
Abstract:
Locally linearly independent bases are constructed for the spaces S-d(r)(Delta) of polynomial splines of degree d greater than or equal to 3r + 2 and smoothness r defined on triangulations, as well as for their superspline subspaces.
Zitierstile
Harvard-Zitierstil: Davydov, O. and Schumaker, L. (2000) Locally linearly independent bases for bivariate polynomial spline spaces, Advances in Computational Mathematics, 13(4), pp. 355-373. https://doi.org/10.1023/A:1016626526861
APA-Zitierstil: Davydov, O., & Schumaker, L. (2000). Locally linearly independent bases for bivariate polynomial spline spaces. Advances in Computational Mathematics. 13(4), 355-373. https://doi.org/10.1023/A:1016626526861
Schlagwörter
dimension