Journalartikel
Autorenliste: Indris, S; Heitjans, P; Roman, HE; Bunde, A
Jahr der Veröffentlichung: 2000
Seiten: 2889-2892
Zeitschrift: Physical Review Letters
Bandnummer: 84
Heftnummer: 13
ISSN: 0031-9007
DOI Link: https://doi.org/10.1103/PhysRevLett.84.2889
Verlag: American Physical Society
Abstract:
We study ionic transport in nano- and microcrystalline (1 - x)Li2O:xB(2)O(3) composites using standard impedance spectroscopy. In the nanocrystalline samples (average grain size of about 30 nm), the ionic conductivity sigma(dc) increases with increasing content x of B2O3 up to a maximum at x approximate to 0.5. Above x approximate to 0.92, sigma(dc) vanishes. By contrast, in the microcrystalline samples (grain size about 10 mu m), sigma(dc) decreases monotonically with x and vanishes above x approximate to 0.55. We can explain this strikingly different behavior by a percolation model that assumes an enhanced conductivity at the interfaces between insulating and conducting phases in both materials and explicitly takes into account the different grain sizes.
Zitierstile
Harvard-Zitierstil: Indris, S., Heitjans, P., Roman, H. and Bunde, A. (2000) Nanocrystalline versus microcrystalline Li2O:B2O3 composites:: Anomalous ionic conductivities and percolation theory, Physical Review Letters, 84(13), pp. 2889-2892. https://doi.org/10.1103/PhysRevLett.84.2889
APA-Zitierstil: Indris, S., Heitjans, P., Roman, H., & Bunde, A. (2000). Nanocrystalline versus microcrystalline Li2O:B2O3 composites:: Anomalous ionic conductivities and percolation theory. Physical Review Letters. 84(13), 2889-2892. https://doi.org/10.1103/PhysRevLett.84.2889